Merging at highway on-ramps while interacting with other human-driven vehicles is challenging for autonomous vehicles (AVs). An efficient route to this challenge requires exploring and exploiting knowledge of the interaction process from demonstrations by humans. However, it is unclear what information (or environmental states) is utilized by the human driver to guide their behavior throughout the whole merging process. This paper provides quantitative analysis and evaluation of the merging behavior at highway on-ramps with congested traffic in a volume of time and space. Two types of social interaction scenarios are considered based on the social preferences of surrounding vehicles: courteous and rude. The significant levels of environmental states for characterizing the interactive merging process are empirically analyzed based on the real-world INTERACTION dataset. Experimental results reveal two fundamental mechanisms in the merging process: 1) Human drivers select different states to make sequential decisions at different moments of task execution, and 2) the social preference of surrounding vehicles can impact variable selection for making decisions. It implies that efficient decision-making design should filter out irrelevant information while considering social preference to achieve comparable human-level performance. These essential findings shed light on developing new decision-making approaches for AVs.
The 6G vision is envisaged to enable agile network expansion and rapid deployment of new on-demand microservices (e.g., visibility services for data traffic management, mobile edge computing services) closer to the network's edge IoT devices. However, providing one of the critical features of network visibility services, i.e., data flow prediction in the network, is challenging at the edge devices within a dynamic cloud-native environment as the traffic flow characteristics are random and sporadic. To provide the AI-native services for the 6G vision, we propose a novel edge-native framework to provide an intelligent prognosis technique for data traffic management in this paper. The prognosis model uses long short-term memory (LSTM)-based encoder-decoder deep learning, which we train on real time-series multivariate data records collected from the edge $\mu$-boxes of a selected testbed network. Our result accurately predicts the statistical characteristics of data traffic and verifies the trained model against the ground truth observations. Moreover, we validate our novel framework with two performance metrics for each feature of the multivariate data.
With the rapid development and usage of Internet-of-Things (IoT) and smart-home devices, researchers continue efforts to improve the "smartness" of those devices to address daily needs in people's lives. Such efforts usually begin with understanding evolving user behaviors on how humans utilize the devices and what they expect in terms of their behavior. However, while research efforts abound, there is a very limited number of datasets that researchers can use to both understand how people use IoT devices and to evaluate algorithms or systems for smart spaces. In this paper, we collect and characterize more than 50,000 recipes from the online If-This-Then-That (IFTTT) service to understand a seemingly straightforward but complicated question: "What kinds of behaviors do humans expect from their IoT devices?"
The present cross-disciplinary research explores pedestrian-autonomous vehicle interactions in a safe, virtual environment. We first present contemporary tools in the field and then propose the design and development of a new application that facilitates pedestrian point of view research. We conduct a three-step user experience experiment where participants answer questions before and after using the application in various scenarios. Behavioral results in virtuality, especially when there were consequences, tend to simulate real life sufficiently well to make design choices, and we received valuable insights into human/vehicle interaction. Our tool seemed to start raising participant awareness of autonomous vehicles and their capabilities and limitations, which is an important step in overcoming public distrust of AVs. Further, studying how users respect or take advantage of AVs may help inform future operating mode indicator design as well as algorithm biases that might support socially-optimal AV operation.
We present a new and complex traffic dataset, METEOR, which captures traffic patterns in unstructured scenarios in India. METEOR consists of more than 1000 one-minute video clips, over 2 million annotated frames with ego-vehicle trajectories, and more than 13 million bounding boxes for surrounding vehicles or traffic agents. METEOR is a unique dataset in terms of capturing the heterogeneity of microscopic and macroscopic traffic characteristics. Furthermore, we provide annotations for rare and interesting driving behaviors such as cut-ins, yielding, overtaking, overspeeding, zigzagging, sudden lane changing, running traffic signals, driving in the wrong lanes, taking wrong turns, lack of right-of-way rules at intersections, etc. We also present diverse traffic scenarios corresponding to rainy weather, nighttime driving, driving in rural areas with unmarked roads, and high-density traffic scenarios. We use our novel dataset to evaluate the performance of object detection and behavior prediction algorithms. We show that state-of-the-art object detectors fail in these challenging conditions and also propose a new benchmark test: action-behavior prediction with a baseline mAP score of 70.74.
Search and recommendation are the two most common approaches used by people to obtain information. They share the same goal -- satisfying the user's information need at the right time. There are already a lot of Internet platforms and Apps providing both search and recommendation services, showing us the demand and opportunity to simultaneously handle both tasks. However, most platforms consider these two tasks independently -- they tend to train separate search model and recommendation model, without exploiting the relatedness and dependency between them. In this paper, we argue that jointly modeling these two tasks will benefit both of them and finally improve overall user satisfaction. We investigate the interactions between these two tasks in the specific information content service domain. We propose first integrating the user's behaviors in search and recommendation into a heterogeneous behavior sequence, then utilizing a joint model for handling both tasks based on the unified sequence. More specifically, we design the Unified Information Search and Recommendation model (USER), which mines user interests from the integrated sequence and accomplish the two tasks in a unified way.
User cold-start recommendation is a long-standing challenge for recommender systems due to the fact that only a few interactions of cold-start users can be exploited. Recent studies seek to address this challenge from the perspective of meta learning, and most of them follow a manner of parameter initialization, where the model parameters can be learned by a few steps of gradient updates. While these gradient-based meta-learning models achieve promising performances to some extent, a fundamental problem of them is how to adapt the global knowledge learned from previous tasks for the recommendations of cold-start users more effectively. In this paper, we develop a novel meta-learning recommender called task-adaptive neural process (TaNP). TaNP is a new member of the neural process family, where making recommendations for each user is associated with a corresponding stochastic process. TaNP directly maps the observed interactions of each user to a predictive distribution, sidestepping some training issues in gradient-based meta-learning models. More importantly, to balance the trade-off between model capacity and adaptation reliability, we introduce a novel task-adaptive mechanism. It enables our model to learn the relevance of different tasks and customize the global knowledge to the task-related decoder parameters for estimating user preferences. We validate TaNP on multiple benchmark datasets in different experimental settings. Empirical results demonstrate that TaNP yields consistent improvements over several state-of-the-art meta-learning recommenders.
Click-through rate (CTR) prediction is one of the fundamental tasks for e-commerce search engines. As search becomes more personalized, it is necessary to capture the user interest from rich behavior data. Existing user behavior modeling algorithms develop different attention mechanisms to emphasize query-relevant behaviors and suppress irrelevant ones. Despite being extensively studied, these attentions still suffer from two limitations. First, conventional attentions mostly limit the attention field only to a single user's behaviors, which is not suitable in e-commerce where users often hunt for new demands that are irrelevant to any historical behaviors. Second, these attentions are usually biased towards frequent behaviors, which is unreasonable since high frequency does not necessarily indicate great importance. To tackle the two limitations, we propose a novel attention mechanism, termed Kalman Filtering Attention (KFAtt), that considers the weighted pooling in attention as a maximum a posteriori (MAP) estimation. By incorporating a priori, KFAtt resorts to global statistics when few user behaviors are relevant. Moreover, a frequency capping mechanism is incorporated to correct the bias towards frequent behaviors. Offline experiments on both benchmark and a 10 billion scale real production dataset, together with an Online A/B test, show that KFAtt outperforms all compared state-of-the-arts. KFAtt has been deployed in the ranking system of a leading e commerce website, serving the main traffic of hundreds of millions of active users everyday.
The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.
Many recommendation algorithms rely on user data to generate recommendations. However, these recommendations also affect the data obtained from future users. This work aims to understand the effects of this dynamic interaction. We propose a simple model where users with heterogeneous preferences arrive over time. Based on this model, we prove that naive estimators, i.e. those which ignore this feedback loop, are not consistent. We show that consistent estimators are efficient in the presence of myopic agents. Our results are validated using extensive simulations.
Visual object tracking is an important computer vision problem with numerous real-world applications including human-computer interaction, autonomous vehicles, robotics, motion-based recognition, video indexing, surveillance and security. In this paper, we aim to extensively review the latest trends and advances in the tracking algorithms and evaluate the robustness of trackers in the presence of noise. The first part of this work comprises a comprehensive survey of recently proposed tracking algorithms. We broadly categorize trackers into correlation filter based trackers and the others as non-correlation filter trackers. Each category is further classified into various types of trackers based on the architecture of the tracking mechanism. In the second part of this work, we experimentally evaluate tracking algorithms for robustness in the presence of additive white Gaussian noise. Multiple levels of additive noise are added to the Object Tracking Benchmark (OTB) 2015, and the precision and success rates of the tracking algorithms are evaluated. Some algorithms suffered more performance degradation than others, which brings to light a previously unexplored aspect of the tracking algorithms. The relative rank of the algorithms based on their performance on benchmark datasets may change in the presence of noise. Our study concludes that no single tracker is able to achieve the same efficiency in the presence of noise as under noise-free conditions; thus, there is a need to include a parameter for robustness to noise when evaluating newly proposed tracking algorithms.