Radiology reporting is a crucial part of the communication between radiologists and other medical professionals, but it can be time-consuming and error-prone. One approach to alleviate this is structured reporting, which saves time and enables a more accurate evaluation than free-text reports. However, there is limited research on automating structured reporting, and no public benchmark is available for evaluating and comparing different methods. To close this gap, we introduce Rad-ReStruct, a new benchmark dataset that provides fine-grained, hierarchically ordered annotations in the form of structured reports for X-Ray images. We model the structured reporting task as hierarchical visual question answering (VQA) and propose hi-VQA, a novel method that considers prior context in the form of previously asked questions and answers for populating a structured radiology report. Our experiments show that hi-VQA achieves competitive performance to the state-of-the-art on the medical VQA benchmark VQARad while performing best among methods without domain-specific vision-language pretraining and provides a strong baseline on Rad-ReStruct. Our work represents a significant step towards the automated population of structured radiology reports and provides a valuable first benchmark for future research in this area. We will make all annotations and our code for annotation generation, model evaluation, and training publicly available upon acceptance. Our dataset and code is available at //github.com/ChantalMP/Rad-ReStruct.
Onboard intelligent processing is widely applied in emergency tasks in the field of remote sensing. However, it is predominantly confined to an individual platform with a limited observation range as well as susceptibility to interference, resulting in limited accuracy. Considering the current state of multi-platform collaborative observation, this article innovatively presents a distributed collaborative perception network called DCP-Net. Firstly, the proposed DCP-Net helps members to enhance perception performance by integrating features from other platforms. Secondly, a self-mutual information match module is proposed to identify collaboration opportunities and select suitable partners, prioritizing critical collaborative features and reducing redundant transmission cost. Thirdly, a related feature fusion module is designed to address the misalignment between local and collaborative features, improving the quality of fused features for the downstream task. We conduct extensive experiments and visualization analyses using three semantic segmentation datasets, including Potsdam, iSAID and DFC23. The results demonstrate that DCP-Net outperforms the existing methods comprehensively, improving mIoU by 2.61%~16.89% at the highest collaboration efficiency, which promotes the performance to a state-of-the-art level.
The process of identifying and characterizing B-cell epitopes, which are the portions of antigens recognized by antibodies, is important for our understanding of the immune system, and for many applications including vaccine development, therapeutics, and diagnostics. Computational epitope prediction is challenging yet rewarding as it significantly reduces the time and cost of laboratory work. Most of the existing tools do not have satisfactory performance and only discriminate epitopes from non-epitopes. This paper presents a new deep learning-based multi-task framework for linear B-cell epitope prediction as well as antibody type-specific epitope classification. Specifically, a sequenced-based neural network model using recurrent layers and Transformer blocks is developed. We propose an amino acid encoding method based on eigen decomposition to help the model learn the representations of epitopes. We introduce modifications to standard cross-entropy loss functions by extending a logit adjustment technique to cope with the class imbalance. Experimental results on data curated from the largest public epitope database demonstrate the validity of the proposed methods and the superior performance compared to competing ones.
With the rapid growth of information, recommender systems have become integral for providing personalized suggestions and overcoming information overload. However, their practical deployment often encounters "dirty" data, where noise or malicious information can lead to abnormal recommendations. Research on improving recommender systems' robustness against such dirty data has thus gained significant attention. This survey provides a comprehensive review of recent work on recommender systems' robustness. We first present a taxonomy to organize current techniques for withstanding malicious attacks and natural noise. We then explore state-of-the-art methods in each category, including fraudster detection, adversarial training, certifiable robust training against malicious attacks, and regularization, purification, self-supervised learning against natural noise. Additionally, we summarize evaluation metrics and common datasets used to assess robustness. We discuss robustness across varying recommendation scenarios and its interplay with other properties like accuracy, interpretability, privacy, and fairness. Finally, we delve into open issues and future research directions in this emerging field. Our goal is to equip readers with a holistic understanding of robust recommender systems and spotlight pathways for future research and development.
Gender inequalities in science have long been observed globally. Studies have demonstrated it through survey data or published literature, focusing on the interests of subjects or authors; few, however, examined the manifestation of gender inequalities on researchers' knowledge status. This study analyzes the relationship between regional and gender identities, topics, and knowledge status while revealing the female labor division in science and scientific research using online Q&A from researchers. We find that gender inequalities are merged with both regional-specific characteristics and global common patterns. Women's field and topic distribution within fields are influenced by regions, yet the prevalent topics are consistent in all regions. Women are more involved in specific topics, particularly topics about experiments with weaker levels of knowledge and they are of less assistance. To promote inequality in science, the scientific community should pay more attention to reducing the knowledge gap and encourage women to work on unexplored topics and areas.
Powder X-ray diffraction (PXRD) is a key technique for the structural characterisation of solid-state materials, but compared with tasks such as liquid handling, its end-to-end automation is highly challenging. This is because coupling PXRD experiments with crystallisation comprises multiple solid handling steps that include sample recovery, sample preparation by grinding, sample mounting and, finally, collection of X-ray diffraction data. Each of these steps has individual technical challenges from an automation perspective, and hence no commercial instrument exists that can grow crystals, process them into a powder, mount them in a diffractometer, and collect PXRD data in an autonomous, closed-loop way. Here we present an automated robotic workflow to carry out autonomous PXRD experiments. The PXRD data collected for polymorphs of small organic compounds is comparable to that collected under the same conditions manually. Beyond accelerating PXRD experiments, this workflow involves 13 component steps and integrates three different types of robots, each from a separate supplier, illustrating the power of flexible, modular automation in complex, multitask laboratories.
Despite recent advances in the field of explainability, much remains unknown about the algorithms that neural networks learn to represent. Recent work has attempted to understand trained models by decomposing them into functional circuits (Csord\'as et al., 2020; Lepori et al., 2023). To advance this research, we developed NeuroSurgeon, a python library that can be used to discover and manipulate subnetworks within models in the Huggingface Transformers library (Wolf et al., 2019). NeuroSurgeon is freely available at //github.com/mlepori1/NeuroSurgeon.
Current backdoor attacks against federated learning (FL) strongly rely on universal triggers or semantic patterns, which can be easily detected and filtered by certain defense mechanisms such as norm clipping, comparing parameter divergences among local updates. In this work, we propose a new stealthy and robust backdoor attack with flexible triggers against FL defenses. To achieve this, we build a generative trigger function that can learn to manipulate the benign samples with an imperceptible flexible trigger pattern and simultaneously make the trigger pattern include the most significant hidden features of the attacker-chosen label. Moreover, our trigger generator can keep learning and adapt across different rounds, allowing it to adjust to changes in the global model. By filling the distinguishable difference (the mapping between the trigger pattern and target label), we make our attack naturally stealthy. Extensive experiments on real-world datasets verify the effectiveness and stealthiness of our attack compared to prior attacks on decentralized learning framework with eight well-studied defenses.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.