亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Inspired by the "Cognitive Hour-glass" model presented in //doi.org/10.1515/jagi-2016-0001, we propose a new framework for developing cognitive architectures aimed at cognitive robotics. The purpose of the proposed framework is foremost to ease the development of cognitive architectures by encouraging and mitigating cooperation and re-use of existing results. This is done by proposing a framework dividing the development of cognitive architectures into a series of layers that can be considered partly in isolation, and some of which directly relate to other research fields. Finally, we give introductions to and review some topics essential to the proposed framework.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認知(zhi):國際認知(zhi)科學雜志(zhi)。 Publisher:Elsevier。 SIT:

The framework of Simulation-to-real learning, i.e, learning policies in simulation and transferring those policies to the real world is one of the most promising approaches towards data-efficient learning in robotics. However, due to the inevitable reality gap between the simulation and the real world, a policy learned in the simulation may not always generate a safe behaviour on the real robot. As a result, during adaptation of the policy in the real world, the robot may damage itself or cause harm to its surroundings. In this work, we introduce a novel learning algorithm called SafeAPT that leverages a diverse repertoire of policies evolved in the simulation and transfers the most promising safe policy to the real robot through episodic interaction. To achieve this, SafeAPT iteratively learns a probabilistic reward model as well as a safety model using real-world observations combined with simulated experiences as priors. Then, it performs Bayesian optimization on the repertoire with the reward model while maintaining the specified safety constraint using the safety model. SafeAPT allows a robot to adapt to a wide range of goals safely with the same repertoire of policies evolved in the simulation. We compare SafeAPT with several baselines, both in simulated and real robotic experiments and show that SafeAPT finds high-performance policies within a few minutes in the real world while minimizing safety violations during the interactions.

In the world of Information Technology, new computing paradigms, driven by requirements of different classes of problems and applications, emerge rapidly. These new computing paradigms pose many new research challenges. Researchers from different disciplines are working together to develop innovative solutions addressing them. In newer research areas with many unknowns, creating roadmaps, enabling tools, inspiring technological and application demonstrators offer confidence and prove feasibility and effectiveness of new paradigm. Drawing on our experience, we share strategy for advancing the field and community building in new and emerging computing research areas. We discuss how the development simulators can be cost-effective in accelerating design of real systems. We highlight strategic role played by different types of publications, conferences, and educational programs. We illustrate effectiveness of elements of our strategy with a case study on progression of cloud computing paradigm.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages scene graph structures to create 22M diverse reasoning questions, all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. An extensive analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We strongly hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding for images and language.

Current captioning approaches can describe images using black-box architectures whose behavior is hardly controllable and explainable from the exterior. As an image can be described in infinite ways depending on the goal and the context at hand, a higher degree of controllability is needed to apply captioning algorithms in complex scenarios. In this paper, we introduce a novel framework for image captioning which can generate diverse descriptions by allowing both grounding and controllability. Given a control signal in the form of a sequence or set of image regions, we generate the corresponding caption through a recurrent architecture which predicts textual chunks explicitly grounded on regions, following the constraints of the given control. Experiments are conducted on Flickr30k Entities and on COCO Entities, an extended version of COCO in which we add grounding annotations collected in a semi-automatic manner. Results demonstrate that our method achieves state of the art performances on controllable image captioning, in terms of caption quality and diversity. Code will be made publicly available.

This manuscript surveys reinforcement learning from the perspective of optimization and control with a focus on continuous control applications. It surveys the general formulation, terminology, and typical experimental implementations of reinforcement learning and reviews competing solution paradigms. In order to compare the relative merits of various techniques, this survey presents a case study of the Linear Quadratic Regulator (LQR) with unknown dynamics, perhaps the simplest and best studied problem in optimal control. The manuscript describes how merging techniques from learning theory and control can provide non-asymptotic characterizations of LQR performance and shows that these characterizations tend to match experimental behavior. In turn, when revisiting more complex applications, many of the observed phenomena in LQR persist. In particular, theory and experiment demonstrate the role and importance of models and the cost of generality in reinforcement learning algorithms. This survey concludes with a discussion of some of the challenges in designing learning systems that safely and reliably interact with complex and uncertain environments and how tools from reinforcement learning and controls might be combined to approach these challenges.

We introduce MilkQA, a question answering dataset from the dairy domain dedicated to the study of consumer questions. The dataset contains 2,657 pairs of questions and answers, written in the Portuguese language and originally collected by the Brazilian Agricultural Research Corporation (Embrapa). All questions were motivated by real situations and written by thousands of authors with very different backgrounds and levels of literacy, while answers were elaborated by specialists from Embrapa's customer service. Our dataset was filtered and anonymized by three human annotators. Consumer questions are a challenging kind of question that is usually employed as a form of seeking information. Although several question answering datasets are available, most of such resources are not suitable for research on answer selection models for consumer questions. We aim to fill this gap by making MilkQA publicly available. We study the behavior of four answer selection models on MilkQA: two baseline models and two convolutional neural network archictetures. Our results show that MilkQA poses real challenges to computational models, particularly due to linguistic characteristics of its questions and to their unusually longer lengths. Only one of the experimented models gives reasonable results, at the cost of high computational requirements.

We introduce DAiSEE, the largest multi-label video classification dataset comprising of over two-and-a-half million video frames (2,723,882), 9068 video snippets (about 25 hours of recording) captured from 112 users for recognizing user affective states, including engagement, in the wild. In addition to engagement, it also includes associated affective states of boredom, confusion, and frustration, which are relevant to such applications. The dataset has four levels of labels from very low to very high for each of the affective states, collected using crowd annotators and correlated with a gold standard annotation obtained from a team of expert psychologists. We have also included benchmark results on this dataset using state-of-the-art video classification methods that are available today, and the baselines on each of the labels is included with this dataset. To the best of our knowledge, DAiSEE is the first and largest such dataset in this domain. We believe that DAiSEE will provide the research community with challenges in feature extraction, context-based inference, and development of suitable machine learning methods for related tasks, thus providing a springboard for further research.

This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.

Cloud Robotics is one of the emerging area of robotics. It has created a lot of attention due to its direct practical implications on Robotics. In Cloud Robotics, the concept of cloud computing is used to offload computational extensive jobs of the robots to the cloud. Apart from this, additional functionalities can also be offered on run to the robots on demand. Simultaneous Localization and Mapping (SLAM) is one of the computational intensive algorithm in robotics used by robots for navigation and map building in an unknown environment. Several Cloud based frameworks are proposed specifically to address the problem of SLAM, DAvinCi, Rapyuta and C2TAM are some of those framework. In this paper, we presented a detailed review of all these framework implementation for SLAM problem.

北京阿比特科技有限公司