亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We created a software enabling journalists to define a set of criteria they would like to see applied regularly to a constantly-updated dataset, sending them an alert when these criteria are met, thus signaling them that there may be a story to write. The main challenges were to keep the product scalable and powerful, while making sure that it could be used by journalists who would not possess all the technical knowledge to exploit it fully. In order to do so, we had to choose Javascript as our main language, as well as designing the code in such a way that it would allow re-usability and further improvements. This project is a proof of concept being tested in a real-life environment, and will be developed towards more and more accessibility.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

The amount of information in satisfiability problem (SAT) is considered. SAT can be polynomial-time solvable when the solving algorithm holds an exponential amount of information. It is also established that SAT Kolmogorov complexity is constant. It is argued that the amount of information in SAT grows at least exponentially with the size of the input instance. The amount of information in SAT is compared with the amount of information in the fixed code algorithms and generated over runtime.

This research's primary motivation of this study is to address the high hardware and computational demands typically associated with LLMs.Therefore,our goal is to find a balance between model lightness and performance,striving to maximize performance while using a comparatively lightweight model. Hyacinth6B was developed with this objective in mind,aiming to fully leverage the core capabilities of LLMs without incurring substantial resource costs, effectively pushing the boundaries of smaller model's performance. The training approach involves parameter efficient finetuning using the LoRA method.

Given the rapid advancement of artificial intelligence, understanding the foundations of intelligent behaviour is increasingly important. Active inference, regarded as a general theory of behaviour, offers a principled approach to probing the basis of sophistication in planning and decision-making. In this paper, we examine two decision-making schemes in active inference based on 'planning' and 'learning from experience'. Furthermore, we also introduce a mixed model that navigates the data-complexity trade-off between these strategies, leveraging the strengths of both to facilitate balanced decision-making. We evaluate our proposed model in a challenging grid-world scenario that requires adaptability from the agent. Additionally, our model provides the opportunity to analyze the evolution of various parameters, offering valuable insights and contributing to an explainable framework for intelligent decision-making.

Research in cognitive psychology has established that whether people prefer simpler explanations to complex ones is context dependent, but the question of `simple vs. complex' becomes critical when an artificial agent seeks to explain its decisions or predictions to humans. We present a model for abstracting causal reasoning chains for the purpose of explanation. This model uses a set of rules to progressively abstract different types of causal information in causal proof traces. We perform online studies using 123 Amazon MTurk participants and with five industry experts over two domains: maritime patrol and weather prediction. We found participants' satisfaction with generated explanations was based on the consistency of relationships among the causes (coherence) that explain an event; and that the important question is not whether people prefer simple or complex explanations, but what types of causal information are relevant to individuals in specific contexts.

In this work, we examine how fact-checkers prioritize which claims to fact-check and what tools may assist them in their efforts. Through a series of interviews with 23 professional fact-checkers from around the world, we validate that harm assessment is a central component of how fact-checkers triage their work. We also clarify the processes behind fact-checking prioritization, finding that they are typically ad hoc, and gather suggestions for tools that could help with these processes. To address the needs articulated by fact-checkers, we present a structured framework of questions to help fact-checkers negotiate the priority of claims through assessing potential harms. Our FABLE Framework of Misinformation Harms incorporates five dimensions of magnitude -- (social) Fragmentation, Actionability, Believability, Likelihood of spread, and Exploitativeness -- that can help determine the potential urgency of a specific message or claim when considering misinformation as harm. The result is a practical and conceptual tool to support fact-checkers and others as they make strategic decisions to prioritize their efforts. We conclude with a discussion of computational approaches to support structured prioritization, as well as applications beyond fact-checking to content moderation and curation.

In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司