There is nowadays a growing demand in vehicular communications for real-time applications requiring video assistance. The new state-of-the-art high-efficiency video coding (HEVC) standard is very promising for real-time video streaming. It offers high coding efficiency, as well as dedicated low delay coding structures. Among these, the all intra (AI) coding structure guarantees minimal coding time at the expense of higher video bitrates, which therefore penalizes transmission performances. In this work, we propose an original cross-layer system in order to enhance received video quality in vehicular communications. The system is low complex and relies on a multiple description coding (MDC) approach. It is based on an adaptive mapping mechanism applied at the IEEE 802.11p standard medium access control (MAC) layer. Simulation results in a realistic vehicular environment demonstrate that for low delay video communications, the proposed method provides significant video quality improvements on the receiver side.
With the rapid growth of Vehicle Ad-hoc Network (VANET) as a promising technology for efficient and reliable communication among vehicles and infrastructure, the security and integrity of VANET communications has become a critical concern. One of the significant threats to VANET is the presence of blackhole attacks, where malicious nodes disrupt the network's functionality and compromise data confidentiality, integrity, and availability. In this paper, we propose a machine learning-based approach for blackhole detection in VANET. To achieve this task, we first create a comprehensive dataset comprising normal and malicious traffic flows. Afterward, we study and define a promising set of features to discriminate the blackhole attacks. Finally, we evaluate various machine learning algorithms, including Gradient Boosting, Random Forest, Support Vector Machines, k-Nearest Neighbors, Gaussian Naive Bayes, and Logistic Regression. Experimental results demonstrate the effectiveness of these algorithms in distinguishing between normal and malicious nodes. Our findings also highlight the potential of machine learning based approach in enhancing the security of VANET by detecting and mitigating blackhole attacks.
Accurate precipitation nowcasting is essential for various purposes, including flood prediction, disaster management, optimizing agricultural activities, managing transportation routes and renewable energy. While several studies have addressed this challenging task from a sequence-to-sequence perspective, most of them have focused on a single area without considering the existing correlation between multiple disjoint regions. In this paper, we formulate precipitation nowcasting as a spatiotemporal graph sequence nowcasting problem. In particular, we introduce Graph Dual-stream Convolutional Attention Fusion (GD-CAF), a novel approach designed to learn from historical spatiotemporal graph of precipitation maps and nowcast future time step ahead precipitation at different spatial locations. GD-CAF consists of spatio-temporal convolutional attention as well as gated fusion modules which are equipped with depthwise-separable convolutional operations. This enhancement enables the model to directly process the high-dimensional spatiotemporal graph of precipitation maps and exploits higher-order correlations between the data dimensions. We evaluate our model on seven years of precipitation maps across Europe and its neighboring areas collected from the ERA5 dataset, provided by Copernicus. The model receives a fully connected graph in which each node represents historical observations from a specific region on the map. Consequently, each node contains a 3D tensor with time, height, and width dimensions. Experimental results demonstrate that the proposed GD-CAF model outperforms the other examined models. Furthermore, the averaged seasonal spatial and temporal attention scores over the test set are visualized to provide additional insights about the strongest connections between different regions or time steps. These visualizations shed light on the decision-making process of our model.
Integrated sensing and communications (ISAC) enabled by unmanned aerial vehicles (UAVs) is a promising technology to facilitate target tracking applications. In contrast to conventional UAV-based ISAC system designs that mainly focus on estimating the target position, the target velocity estimation also needs to be considered due to its crucial impacts on link maintenance and real-time response, which requires new designs on resource allocation and tracking scheme. In this paper, we propose an extended Kalman filtering-based tracking scheme for a UAV-enabled ISAC system where a UAV tracks a moving object and also communicates with a device attached to the object. Specifically, a weighted sum of predicted posterior Cram\'er-Rao bound (PCRB) for object relative position and velocity estimation is minimized by optimizing the UAV trajectory, where an efficient solution is obtained based on the successive convex approximation method. Furthermore, under a special case with the measurement mean square error (MSE), the optimal relative motion state is obtained and proved to keep a fixed elevation angle and zero relative velocity. Numerical results validate that the obtained solution to the predicted PCRB minimization can be approximated by the optimal relative motion state when predicted measurement MSE dominates the predicted PCRBs, as well as the effectiveness of the proposed tracking scheme. Moreover, three interesting trade-offs on system performance resulted from the fixed elevation angle are illustrated.
Federated learning (FL) enables wireless terminals to collaboratively learn a shared parameter model while keeping all the training data on devices per se. Parameter sharing consists of synchronous and asynchronous ways: the former transmits parameters as blocks or frames and waits until all transmissions finish, whereas the latter provides messages about the status of pending and failed parameter transmission requests. Whatever synchronous or asynchronous parameter sharing is applied, the learning model shall adapt to distinct network architectures as an improper learning model will deteriorate learning performance and, even worse, lead to model divergence for the asynchronous transmission in resource-limited large-scale Internet-of-Things (IoT) networks. This paper proposes a decentralized learning model and develops an asynchronous parameter-sharing algorithm for resource-limited distributed IoT networks. This decentralized learning model approaches a convex function as the number of nodes increases, and its learning process converges to a global stationary point with a higher probability than the centralized FL model. Moreover, by jointly accounting for the convergence bound of federated learning and the transmission delay of wireless communications, we develop a node scheduling and bandwidth allocation algorithm to minimize the transmission delay. Extensive simulation results corroborate the effectiveness of the distributed algorithm in terms of fast learning model convergence and low transmission delay.
UAV-assisted integrated sensing and communication (ISAC) network is crucial for post-disaster emergency rescue. The speed of UAV deployment will directly impact rescue results. However, the ISAC UAV deployment in emergency scenarios is difficult to solve, which contradicts the rapid deployment. In this paper, we propose a two-stage deployment framework to achieve rapid ISAC UAV deployment in emergency scenarios, which consists of an offline stage and an online stage. Specifically, in the offline stage, we first formulate the ISAC UAV deployment problem and define the ISAC utility as the objective function, which integrates communication rate and localization accuracy. Secondly, we develop a dynamic particle swarm optimization (DPSO) algorithm to construct an optimized UAV deployment dataset. Finally, we train a convolutional neural network (CNN) model with this dataset, which replaces the time-consuming DPSO algorithm. In the online stage, the trained CNN model can be used to make quick decisions for the ISAC UAV deployment. The simulation results indicate that the trained CNN model achieves superior ISAC performance compared to the classic particle swarm optimization algorithm. Additionally, it significantly reduces the deployment time by more than 96%.
The real-time dynamic environment perception has become vital for autonomous robots in crowded spaces. Although the popular voxel-based mapping methods can efficiently represent 3D obstacles with arbitrarily complex shapes, they can hardly distinguish between static and dynamic obstacles, leading to the limited performance of obstacle avoidance. While plenty of sophisticated learning-based dynamic obstacle detection algorithms exist in autonomous driving, the quadcopter's limited computation resources cannot achieve real-time performance using those approaches. To address these issues, we propose a real-time dynamic obstacle tracking and mapping system for quadcopter obstacle avoidance using an RGB-D camera. The proposed system first utilizes a depth image with an occupancy voxel map to generate potential dynamic obstacle regions as proposals. With the obstacle region proposals, the Kalman filter and our continuity filter are applied to track each dynamic obstacle. Finally, the environment-aware trajectory prediction method is proposed based on the Markov chain using the states of tracked dynamic obstacles. We implemented the proposed system with our custom quadcopter and navigation planner. The simulation and physical experiments show that our methods can successfully track and represent obstacles in dynamic environments in real-time and safely avoid obstacles. Our software is available on GitHub as an open-source ROS package.
Generating high-quality and person-generic visual dubbing remains a challenge. Recent innovation has seen the advent of a two-stage paradigm, decoupling the rendering and lip synchronization process facilitated by intermediate representation as a conduit. Still, previous methodologies rely on rough landmarks or are confined to a single speaker, thus limiting their performance. In this paper, we propose DiffDub: Diffusion-based dubbing. We first craft the Diffusion auto-encoder by an inpainting renderer incorporating a mask to delineate editable zones and unaltered regions. This allows for seamless filling of the lower-face region while preserving the remaining parts. Throughout our experiments, we encountered several challenges. Primarily, the semantic encoder lacks robustness, constricting its ability to capture high-level features. Besides, the modeling ignored facial positioning, causing mouth or nose jitters across frames. To tackle these issues, we employ versatile strategies, including data augmentation and supplementary eye guidance. Moreover, we encapsulated a conformer-based reference encoder and motion generator fortified by a cross-attention mechanism. This enables our model to learn person-specific textures with varying references and reduces reliance on paired audio-visual data. Our rigorous experiments comprehensively highlight that our ground-breaking approach outpaces existing methods with considerable margins and delivers seamless, intelligible videos in person-generic and multilingual scenarios.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.
Degradation of image quality due to the presence of haze is a very common phenomenon. Existing DehazeNet [3], MSCNN [11] tackled the drawbacks of hand crafted haze relevant features. However, these methods have the problem of color distortion in gloomy (poor illumination) environment. In this paper, a cardinal (red, green and blue) color fusion network for single image haze removal is proposed. In first stage, network fusses color information present in hazy images and generates multi-channel depth maps. The second stage estimates the scene transmission map from generated dark channels using multi channel multi scale convolutional neural network (McMs-CNN) to recover the original scene. To train the proposed network, we have used two standard datasets namely: ImageNet [5] and D-HAZY [1]. Performance evaluation of the proposed approach has been carried out using structural similarity index (SSIM), mean square error (MSE) and peak signal to noise ratio (PSNR). Performance analysis shows that the proposed approach outperforms the existing state-of-the-art methods for single image dehazing.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.