We extend the deterministic-control quantum Turing machine (dcq-TM) model to incorporate mixed state inputs and outputs. Moreover, we define dcq-computable states as those that can be accurately approximated by a dcq-TM, and we introduce (conditional) Kolmogorov complexity of quantum states. We show that this notion is machine independent and that the set of dcq-computable states coincides with states having computable classical representations. Furthermore, we prove an algorithmic information version of the no-cloning theorem stating that cloning most quantum states is as difficult as creating them. Finally, we also propose a correlation-aware definition for algorithmic mutual information and shown that it satisfies symmetry of information property.
Quantum computers hold great promise to enhance machine learning, but their current qubit counts restrict the realisation of this promise. In an attempt to placate this limitation techniques can be applied for evaluating a quantum circuit using a machine with fewer qubits than the circuit naively requires. These techniques work by evaluating many smaller circuits on the smaller machine, that are then combined in a polynomial to replicate the output of the larger machine. This scheme requires more circuit evaluations than are practical for general circuits. However, we investigate the possibility that for certain applications many of these subcircuits are superfluous, and that a much smaller sum is sufficient to estimate the full circuit. We construct a machine learning model that may be capable of approximating the outputs of the larger circuit with much fewer circuit evaluations. We successfully apply our model to the task of digit recognition, using simulated quantum computers much smaller than the data dimension. The model is also applied to the task of approximating a random 10 qubit PQC with simulated access to a 5 qubit computer, even with only relatively modest number of circuits our model provides an accurate approximation of the 10 qubit PQCs output, superior to a neural network attempt. The developed method might be useful for implementing quantum models on larger data throughout the NISQ era.
Deep generative chemistry models emerge as powerful tools to expedite drug discovery. However, the immense size and complexity of the structural space of all possible drug-like molecules pose significant obstacles, which could be overcome with hybrid architectures combining quantum computers with deep classical networks. As the first step toward this goal, we built a compact discrete variational autoencoder (DVAE) with a Restricted Boltzmann Machine (RBM) of reduced size in its latent layer. The size of the proposed model was small enough to fit on a state-of-the-art D-Wave quantum annealer and allowed training on a subset of the ChEMBL dataset of biologically active compounds. Finally, we generated 2331 novel chemical structures with medicinal chemistry and synthetic accessibility properties in the ranges typical for molecules from ChEMBL. The presented results demonstrate the feasibility of using already existing or soon-to-be-available quantum computing devices as testbeds for future drug discovery applications.
Differential privacy is a widely used notion of security that enables the processing of sensitive information. In short, differentially private algorithms map "neighbouring" inputs to close output distributions. Prior work proposed several quantum extensions of differential privacy, each of them built on substantially different notions of neighbouring quantum states. In this paper, we propose a novel and general definition of neighbouring quantum states. We demonstrate that this definition captures the underlying structure of quantum encodings and can be used to provide exponentially tighter privacy guarantees for quantum measurements. Our approach combines the addition of classical and quantum noise and is motivated by the noisy nature of near-term quantum devices. Moreover, we also investigate an alternative setting where we are provided with multiple copies of the input state. In this case, differential privacy can be ensured with little loss in accuracy combining concentration of measure and noise-adding mechanisms. En route, we prove the advanced joint convexity of the quantum hockey-stick divergence and we demonstrate how this result can be applied to quantum differential privacy. Finally, we complement our theoretical findings with an empirical estimation of the certified adversarial robustness ensured by differentially private measurements.
We observe that pre-trained large language models (LLMs) are capable of autoregressively completing complex token sequences -- from arbitrary ones procedurally generated by probabilistic context-free grammars (PCFG), to more rich spatial patterns found in the Abstract Reasoning Corpus (ARC), a general AI benchmark, prompted in the style of ASCII art. Surprisingly, pattern completion proficiency can be partially retained even when the sequences are expressed using tokens randomly sampled from the vocabulary. These results suggest that without any additional training, LLMs can serve as general sequence modelers, driven by in-context learning. In this work, we investigate how these zero-shot capabilities may be applied to problems in robotics -- from extrapolating sequences of numbers that represent states over time to complete simple motions, to least-to-most prompting of reward-conditioned trajectories that can discover and represent closed-loop policies (e.g., a stabilizing controller for CartPole). While difficult to deploy today for real systems due to latency, context size limitations, and compute costs, the approach of using LLMs to drive low-level control may provide an exciting glimpse into how the patterns among words could be transferred to actions.
We consider the problem of multi-path entanglement distribution to a pair of nodes in a quantum network consisting of devices with non-deterministic entanglement swapping capabilities. Multi-path entanglement distribution enables a network to establish end-to-end entangled links across any number of available paths with pre-established link-level entanglement. Probabilistic entanglement swapping, on the other hand, limits the amount of entanglement that is shared between the nodes; this is especially the case when, due to architectural and other practical constraints, swaps must be performed in temporal proximity to each other. Limiting our focus to the case where only bipartite entangled states are generated across the network, we cast the problem as an instance of generalized flow maximization between two quantum end nodes wishing to communicate. We propose a mixed-integer quadratically constrained program (MIQCP) to solve this flow problem for networks with arbitrary topology. We then compute the overall network capacity, defined as the maximum number of EPR states distributed to users per time unit, by solving the flow problem for all possible network states generated by probabilistic entangled link presence and absence, and subsequently by averaging over all network state capacities. The MIQCP can also be applied to networks with multiplexed links. While our approach for computing the overall network capacity has the undesirable property that the total number of states grows exponentially with link multiplexing capability, it nevertheless yields an exact solution that serves as an upper bound comparison basis for the throughput performance of easily-implementable yet non-optimal entanglement routing algorithms. We apply our capacity computation method to several networks, including a topology based on SURFnet -- a backbone network used for research purposes in the Netherlands.
The reconstruction of quantum states from experimental measurements, often achieved using quantum state tomography (QST), is crucial for the verification and benchmarking of quantum devices. However, performing QST for a generic unstructured quantum state requires an enormous number of state copies that grows \emph{exponentially} with the number of individual quanta in the system, even for the most optimal measurement settings. Fortunately, many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured. In one dimension, such states are expected to be well approximated by matrix product operators (MPOs) with a finite matrix/bond dimension independent of the number of qubits, therefore enabling efficient state representation. Nevertheless, it is still unclear whether efficient QST can be performed for these states in general. In this paper, we attempt to bridge this gap and establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes. We begin by studying two types of random measurement settings: Gaussian measurements and Haar random rank-one Positive Operator Valued Measures (POVMs). We show that the information contained in an MPO with a finite bond dimension can be preserved using a number of random measurements that depends only \emph{linearly} on the number of qubits, assuming no statistical error of the measurements. We then study MPO-based QST with physical quantum measurements through Haar random rank-one POVMs that can be implemented on quantum computers. We prove that only a \emph{polynomial} number of state copies in the number of qubits is required to guarantee bounded recovery error of an MPO state.
Byzantine agreement, the underlying core of blockchain, aims to make every node in a decentralized network reach consensus. Classical Byzantine agreements unavoidably face two major problems. One is $1/3$ fault-tolerance bound, which means that the system to tolerate $f$ malicious players requires at least $3f+1$ players. The other is the security loopholes from its classical cryptography methods. Here, we propose a strict quantum Byzantine agreement with unconditional security to break this bound with nearly $1/2$ fault tolerance due to multiparty correlation provided by quantum digital signatures. Our work strictly obeys the original Byzantine conditions and can be extended to any number of players without requirements for multiparticle entanglement. We experimentally demonstrate three-party and five-party quantum consensus for a digital ledger. Our work indicates the quantum advantage in terms of consensus problems and suggests an important avenue for quantum blockchain and quantum consensus networks.
Cook and Reckhow 1979 pointed out that NP is not closed under complementation iff there is no propositional proof system that admits polynomial size proofs of all tautologies. Theory of proof complexity generators aims at constructing sets of tautologies hard for strong and possibly for all proof systems. We focus at a conjecture from K.2004 in foundations of the theory that there is a proof complexity generator hard for all proof systems. This can be equivalently formulated (for p-time generators) without a reference to proof complexity notions as follows: * There exist a p-time function $g$ stretching each input by one bit such that its range intersects all infinite NP sets. We consider several facets of this conjecture, including its links to bounded arithmetic (witnessing and independence results), to time-bounded Kolmogorov complexity, to feasible disjunction property of propositional proof systems and to complexity of proof search. We argue that a specific gadget generator from K.2009 is a good candidate for $g$. We define a new hardness property of generators, the $\bigvee$-hardness, and shows that one specific gadget generator is the $\bigvee$-hardest (w.r.t. any sufficiently strong proof system). We define the class of feasibly infinite NP sets and show, assuming a hypothesis from circuit complexity, that the conjecture holds for all feasibly infinite NP sets.
In recent years, software engineers have explored ways to assist quantum software programmers. Our goal in this paper is to continue this exploration and see if quantum software programmers deal with some problems plaguing classical programs. Specifically, we examine whether intermittently failing tests, i.e., flaky tests, affect quantum software development. To explore flakiness, we conduct a preliminary analysis of 14 quantum software repositories. Then, we identify flaky tests and categorize their causes and methods of fixing them. We find flaky tests in 12 out of 14 quantum software repositories. In these 12 repositories, the lower boundary of the percentage of issues related to flaky tests ranges between 0.26% and 1.85% per repository. We identify 46 distinct flaky test reports with 8 groups of causes and 7 common solutions. Further, we notice that quantum programmers are not using some of the recent flaky test countermeasures developed by software engineers. This work may interest practitioners, as it provides useful insight into the resolution of flaky tests in quantum programs. Researchers may also find the paper helpful as it offers quantitative data on flaky tests in quantum software and points to new research opportunities.
For all the successes in verifying low-level, efficient, security-critical code, little has been said or studied about the structure, architecture and engineering of such large-scale proof developments. We present the design, implementation and evaluation of a set of language-based techniques that allow the programmer to modularly write and verify code at a high level of abstraction, while retaining control over the compilation process and producing high-quality, zero-overhead, low-level code suitable for integration into mainstream software. We implement our techniques within the F* proof assistant, and specifically its shallowly-embedded Low* toolchain that compiles to C. Through our evaluation, we establish that our techniques were critical in scaling the popular HACL* library past 100,000 lines of verified source code, and brought about significant gains in proof engineer productivity. The exposition of our methodology converges on one final, novel case study: the streaming API, a finicky API that has historically caused many bugs in high-profile software. Using our approach, we manage to capture the streaming semantics in a generic way, and apply it ``for free'' to over a dozen use-cases. Six of those have made it into the reference implementation of the Python programming language, replacing the previous CVE-ridden code.