We study the rank of sub-matrices arising out of kernel functions, $F(\pmb{x},\pmb{y}): \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$, where $\pmb{x},\pmb{y} \in \mathbb{R}^d$, that have a singularity along the diagonal $\pmb{x}=\pmb{y}$. Such kernel functions are frequently encountered in a wide range of applications such as $N$ body problems, Green's functions, integral equations, geostatistics, kriging, Gaussian processes, etc. One of the challenges in dealing with these kernel functions is that the corresponding matrix associated with these kernels is large and dense and thereby, the computational cost of matrix operations is high. In this article, we prove new theorems bounding the numerical rank of sub-matrices arising out of these kernel functions. Under reasonably mild assumptions, we prove that the rank of certain sub-matrices is rank-deficient in finite precision. This rank depends on the dimension of the ambient space and also on the type of interaction between the hyper-cubes containing the corresponding set of particles. This rank structure can be leveraged to reduce the computational cost of certain matrix operations such as matrix-vector products, solving linear systems, etc. We also present numerical results on the growth of rank of certain sub-matrices in $1$D, $2$D, $3$D and $4$D, which, not surprisingly, agrees with the theoretical results.
We consider a high-dimensional random constrained optimization problem in which a set of binary variables is subjected to a linear system of equations. The cost function is a simple linear cost, measuring the Hamming distance with respect to a reference configuration. Despite its apparent simplicity, this problem exhibits a rich phenomenology. We show that different situations arise depending on the random ensemble of linear systems. When each variable is involved in at most two linear constraints, we show that the problem can be partially solved analytically, in particular we show that upon convergence, the zero-temperature limit of the cavity equations returns the optimal solution. We then study the geometrical properties of more general random ensembles. In particular we observe a range in the density of constraints at which the systems enters a glassy phase where the cost function has many minima. Interestingly, the algorithmic performances are only sensitive to another phase transition affecting the structure of configurations allowed by the linear constraints. We also extend our results to variables belonging to $\text{GF}(q)$, the Galois Field of order $q$. We show that increasing the value of $q$ allows to achieve a better optimum, which is confirmed by the Replica Symmetric cavity method predictions.
We investigate the approximation of weighted integrals over $\mathbb{R}^d$ for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to $n$ integration nodes, for functions from these spaces. In the one-dimensional case $(d=1)$, we obtain the right convergence rate of optimal quadratures . For $d \ge 2$, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain $\mathbb{R}^d$.
Independent learners are learning agents that naively employ single-agent learning algorithms in multi-agent systems, intentionally ignoring the effect of other strategic agents present in their environment. This paper studies $N$-player mean-field games from a decentralized learning perspective with two primary objectives: (i) to study the convergence properties of independent learners, and (ii) to identify structural properties of $N$-player mean-field games that can guide algorithm design. Toward the first objective, we study the learning iterates obtained by independent learners, and we use recent results from POMDP theory to show that these iterates converge under mild conditions. In particular, we consider four information structures corresponding to information at each agent: (1) global state + local action; (2) local state, mean-field state + local action; (3) local state, compressed mean-field state + local action; (4) local state with local action. We present a notion of subjective equilibrium suitable for the analysis of independent learners. Toward the second objective, we study a family of dynamical systems on the set of joint policies. The dynamical systems under consideration are subject to a so-called $\epsilon$-satisficing condition: agents who are subjectively $\epsilon$-best-responding at a given joint policy do not change their policy. We establish a useful structural property relating to such dynamical systems. Finally, we develop an independent learning algorithm for $N$-player mean-field games that drives play to subjective $\epsilon$-equilibrium under self-play, exploiting the aforementioned structural properties to guarantee convergence of policies. Notably, we avoid requiring agents to follow the same policy (via a representative agent) during the learning process, which has been the typical approach in the existing literature on learning for mean-field games.
A burgeoning line of research has developed deep neural networks capable of approximating the solutions to high dimensional PDEs, opening related lines of theoretical inquiry focused on explaining how it is that these models appear to evade the curse of dimensionality. However, most theoretical analyses thus far have been limited to linear PDEs. In this work, we take a step towards studying the representational power of neural networks for approximating solutions to nonlinear PDEs. We focus on a class of PDEs known as \emph{nonlinear elliptic variational PDEs}, whose solutions minimize an \emph{Euler-Lagrange} energy functional $\mathcal{E}(u) = \int_\Omega L(\nabla u) dx$. We show that if composing a function with Barron norm $b$ with $L$ produces a function of Barron norm at most $B_L b^p$, the solution to the PDE can be $\epsilon$-approximated in the $L^2$ sense by a function with Barron norm $O\left(\left(dB_L\right)^{p^{\log(1/\epsilon)}}\right)$. By a classical result due to Barron [1993], this correspondingly bounds the size of a 2-layer neural network needed to approximate the solution. Treating $p, \epsilon, B_L$ as constants, this quantity is polynomial in dimension, thus showing neural networks can evade the curse of dimensionality. Our proof technique involves neurally simulating (preconditioned) gradient in an appropriate Hilbert space, which converges exponentially fast to the solution of the PDE, and such that we can bound the increase of the Barron norm at each iterate. Our results subsume and substantially generalize analogous prior results for linear elliptic PDEs.
We present a novel sequential Monte Carlo approach to online smoothing of additive functionals in a very general class of path-space models. Hitherto, the solutions proposed in the literature suffer from either long-term numerical instability due to particle-path degeneracy or, in the case that degeneracy is remedied by particle approximation of the so-called backward kernel, high computational demands. In order to balance optimally computational speed against numerical stability, we propose to furnish a (fast) naive particle smoother, propagating recursively a sample of particles and associated smoothing statistics, with an adaptive backward-sampling-based updating rule which allows the number of (costly) backward samples to be kept at a minimum. This yields a new, function-specific additive smoothing algorithm, AdaSmooth, which is computationally fast, numerically stable and easy to implement. The algorithm is provided with rigorous theoretical results guaranteeing its consistency, asymptotic normality and long-term stability as well as numerical results demonstrating empirically the clear superiority of AdaSmooth to existing algorithms.
We consider the approximation of manifold-valued functions by embedding the manifold into a higher dimensional space, applying a vector-valued approximation operator and projecting the resulting vector back to the manifold. It is well known that the approximation error for manifold-valued functions is close to the approximation error for vector-valued functions. This is not true anymore if we consider the derivatives of such functions. In our paper we give pre-asymptotic error bounds for the approximation of the derivative of manifold-valued function. In particular, we provide explicit constants that depend on the reach of the embedded manifold.
We study the rank of sub-matrices arising out of kernel functions, $F(\pmb{x},\pmb{y}): \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$, where $\pmb{x},\pmb{y} \in \mathbb{R}^d$ with $F(\pmb{x},\pmb{y})$ is smooth everywhere except along the line $\pmb{x}=\pmb{y}$. Such kernel functions are frequently encountered in a wide range of applications such as $N$ body problems, Green's functions, integral equations, geostatistics, kriging, Gaussian processes, etc. One of the challenges in dealing with these kernel functions is that the corresponding matrix associated with these kernels is large and dense and thereby, the computational cost of matrix operations is high. In this article, we prove new theorems bounding the numerical rank of sub-matrices arising out of these kernel functions. Under reasonably mild assumptions, we prove that the rank of certain sub-matrices is rank-deficient in finite precision. This rank depends on the dimension of the ambient space and also on the type of interaction between the hyper-cubes containing the corresponding set of particles. This rank structure can be leveraged to reduce the computational cost of certain matrix operations such as matrix-vector products, solving linear systems, etc. We also present numerical results on the growth of rank of certain sub-matrices in $1$D, $2$D, $3$D and $4$D, which, not surprisingly, agrees with the theoretical results.
Tensor ring (TR) decomposition has been widely applied as an effective approach in a variety of applications to discover the hidden low-rank patterns in multidimensional data. A well-known method for TR decomposition is the alternating least squares (ALS). However, it often suffers from the notorious intermediate data explosion issue, especially for large-scale tensors. In this paper, we provide two strategies to tackle this issue and design three ALS-based algorithms. Specifically, the first strategy is used to simplify the calculation of the coefficient matrices of the normal equations for the ALS subproblems, which takes full advantage of the structure of the coefficient matrices of the subproblems and hence makes the corresponding algorithm perform much better than the regular ALS method in terms of computing time. The second strategy is to stabilize the ALS subproblems by QR factorizations on TR-cores, and hence the corresponding algorithms are more numerically stable compared with our first algorithm. Extensive numerical experiments on synthetic and real data are given to illustrate and confirm the above results. In addition, we also present the complexity analyses of the proposed algorithms.
In recent years, there has been significant research interest in solving Quadratic Unconstrained Binary Optimisation (QUBO) problems. Physics-inspired optimisation algorithms have been proposed for deriving optimal or sub-optimal solutions to QUBOs. These methods are particularly attractive within the context of using specialised hardware, such as quantum computers, application specific CMOS and other high performance computing resources for solving optimisation problems. These solvers are then applied to QUBO formulations of combinatorial optimisation problems. Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems. However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made. In this study, we compare methods of deriving scalarisation weights when combining two objectives of the cardinality constrained mean-variance portfolio optimisation problem into one. We show significant performance improvement (measured in terms of hypervolume) when using a method that iteratively fills the largest space in the Pareto front compared to a n\"aive approach using uniformly generated weights.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.