(Sender-)Deniable encryption provides a very strong privacy guarantee: a sender who is coerced by an attacker into "opening" their ciphertext after-the-fact is able to generate "fake" local random choices that are consistent with any plaintext of their choice. The only known fully-efficient constructions of public-key deniable encryption rely on indistinguishability obfuscation (iO) (which currently can only be based on sub-exponential hardness assumptions). In this work, we study (sender-)deniable encryption in a setting where the encryption procedure is a quantum algorithm, but the ciphertext is classical. We propose two notions of deniable encryption in this setting. The first notion, called quantum deniability, parallels the classical one. We give a fully efficient construction satisfying this definition, assuming the quantum hardness of the Learning with Errors (LWE) problem. The second notion, unexplainability, starts from a new perspective on deniability, and leads to a natural common view of deniability in the classical and quantum settings. We give a construction which is secure in the random oracle model, assuming the quantum hardness of LWE. Notably, our construction satisfies a strong form of unexplainability which is impossible to achieve classically, thus highlighting a new quantum phenomenon that may be of independent interest.
In the coming years, quantum networks will allow quantum applications to thrive thanks to the new opportunities offered by end-to-end entanglement of qubits on remote hosts via quantum repeaters. On a geographical scale, this will lead to the dawn of the Quantum Internet. While a full-blown deployment is yet to come, the research community is already working on a variety of individual enabling technologies and solutions. In this paper, with the guidance of extensive simulations, we take a broader view and investigate the problems of Quality of Service (QoS) and provisioning in the context of quantum networks, which are very different from their counterparts in classical data networks due to some of their fundamental properties. Our work leads the way towards a new class of studies that will allow the research community to better understand the challenges of quantum networks and their potential commercial exploitation.
This technical report contains the proofs to the lemmata and theorems of [15] as well as some additional material. The main contributions of [15] are the analysis of the applicability of several quality criteria for encodings within a quantum based setting and a discussion on new, quantum specific criteria. Therefore, an encoding from one quantum based process calculi into another is presented and the quality criteria are applied to it. The separation result proves the absence of an encoding the other way around.
In recent years, with the rapid growth of Internet data, the number and types of scientific and technological resources are also rapidly expanding. However, the increase in the number and category of information data will also increase the cost of information acquisition. For technology-based enterprises or users, in addition to general papers, patents, etc., policies related to technology or the development of their industries should also belong to a type of scientific and technological resources. The cost and difficulty of acquiring users. Extracting valuable science and technology policy resources from a huge amount of data with mixed contents and providing accurate and fast retrieval will help to break down information barriers and reduce the cost of information acquisition, which has profound social significance and social utility. This article focuses on the difficulties and problems in the field of science and technology policy, and introduces related technologies and developments.
Quantum communications is a promising technology that will play a fundamental role in the design of future networks. In fact, significant efforts are being dedicated by both the quantum physics and the classical communications communities on developing new architectures, solutions, and practical implementations of quantum communication networks (QCNs). Although these efforts led to various advances in today's technologies, there still exists a non-trivial gap between the research efforts of the two communities on designing and optimizing the QCN performance. For instance, most prior works by the classical communications community ignore important quantum physics-based constraints when designing QCNs. For example, many works on entanglement distribution do not account for the decoherence of qubits inside quantum memories and, thus, their designs become impractical since they assume an infinite quantum states' lifetime. In this paper, we introduce a novel framework, dubbed physics-informed QCNs, for designing and analyzing the performance of QCNs, by relying on the quantum physics principles that underly the different QCN components. The need of the proposed approach is then assessed and its fundamental role in designing practical QCNs is analyzed across various open research areas. Moreover, we identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies to enhance their performance. Finally, we analyze multiple pressing challenges and open research directions in QCNs that must be treated using a physics-informed approach to lead practically viable results. Ultimately, this work attempts to bridge the gap between the classical communications and the quantum physics communities in the area of QCNs to foster the development of future communication networks (6G and beyond, and the quantum Internet).
Applications of Reinforcement Learning (RL), in which agents learn to make a sequence of decisions despite lacking complete information about the latent states of the controlled system, that is, they act under partial observability of the states, are ubiquitous. Partially observable RL can be notoriously difficult -- well-known information-theoretic results show that learning partially observable Markov decision processes (POMDPs) requires an exponential number of samples in the worst case. Yet, this does not rule out the existence of large subclasses of POMDPs over which learning is tractable. In this paper we identify such a subclass, which we call weakly revealing POMDPs. This family rules out the pathological instances of POMDPs where observations are uninformative to a degree that makes learning hard. We prove that for weakly revealing POMDPs, a simple algorithm combining optimism and Maximum Likelihood Estimation (MLE) is sufficient to guarantee polynomial sample complexity. To the best of our knowledge, this is the first provably sample-efficient result for learning from interactions in overcomplete POMDPs, where the number of latent states can be larger than the number of observations.
In this work a quantum analogue of Bayesian statistical inference is considered. Based on the notion of instrument, we propose a sequential measurement scheme from which observations needed for statistical inference are obtained. We further put forward a quantum analogue of Bayes rule, which states how the prior normal state of a quantum system updates under those observations. We next generalize the fundamental notions and results of Bayesian statistics according to the quantum Bayes rule. It is also note that our theory retains the classical one as its special case. Finally, we investigate the limit of posterior normal state as the number of observations tends to infinity.
Data collection and research methodology represents a critical part of the research pipeline. On the one hand, it is important that we collect data in a way that maximises the validity of what we are measuring, which may involve the use of long scales with many items. On the other hand, collecting a large number of items across multiple scales results in participant fatigue, and expensive and time consuming data collection. It is therefore important that we use the available resources optimally. In this work, we consider how a consideration for theory and the associated causal/structural model can help us to streamline data collection procedures by not wasting time collecting data for variables which are not causally critical for subsequent analysis. This not only saves time and enables us to redirect resources to attend to other variables which are more important, but also increases research transparency and the reliability of theory testing. In order to achieve this streamlined data collection, we leverage structural models, and Markov conditional independency structures implicit in these models to identify the substructures which are critical for answering a particular research question. In this work, we review the relevant concepts and present a number of didactic examples with the hope that psychologists can use these techniques to streamline their data collection process without invalidating the subsequent analysis. We provide a number of simulation results to demonstrate the limited analytical impact of this streamlining.
Generating a test suite for a quantum program such that it has the maximum number of failing tests is an optimization problem. For such optimization, search-based testing has shown promising results in the context of classical programs. To this end, we present a test generation tool for quantum programs based on a genetic algorithm, called QuSBT (Search-based Testing of Quantum Programs). QuSBT automates the testing of quantum programs, with the aim of finding a test suite having the maximum number of failing test cases. QuSBT utilizes IBM's Qiskit as the simulation framework for quantum programs. We present the tool architecture in addition to the implemented methodology (i.e., the encoding of the search individual, the definition of the fitness function expressing the search problem, and the test assessment w.r.t. two types of failures). Finally, we report results of the experiments in which we tested a set of faulty quantum programs with QuSBT to assess its effectiveness. Repository (code and experimental results): //github.com/Simula-COMPLEX/qusbt-tool Video: //youtu.be/3apRCtluAn4
Existing inferential methods for small area data involve a trade-off between maintaining area-level frequentist coverage rates and improving inferential precision via the incorporation of indirect information. In this article, we propose a method to obtain an area-level prediction region for a future observation which mitigates this trade-off. The proposed method takes a conformal prediction approach in which the conformity measure is the posterior predictive density of a working model that incorporates indirect information. The resulting prediction region has guaranteed frequentist coverage regardless of the working model, and, if the working model assumptions are accurate, the region has minimum expected volume compared to other regions with the same coverage rate. When constructed under a normal working model, we prove such a prediction region is an interval and construct an efficient algorithm to obtain the exact interval. We illustrate the performance of our method through simulation studies and an application to EPA radon survey data.
After spending 9 years in Quantum Computing and given the impending timeline of developing good quality quantum processing units, it is the moment to rethink the approach to advance quantum computing research. Rather than waiting for quantum hardware technologies to mature, we need to start assessing in tandem the impact of the occurrence of quantum computing in various scientific fields. However, for this purpose, we need to use a complementary but quite different approach than proposed by the NISQ vision, which is heavily focused on and burdened by the engineering challenges. That is why we propose and advocate the PISQ-approach: Perfect Intermediate-Scale Quantum computing based on the already known concept of perfect qubits. This will allow researchers to focus much more on the development of new applications by defining the algorithms in terms of perfect qubits and evaluating them on quantum computing simulators that are executed on supercomputers. It is not a long-term solution but it will allow universities to currently develop research on quantum logic and algorithms and companies can already start developing their internal know-how on quantum solutions.