亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by a variety of applications, high-dimensional time series have become an active topic of research. In particular, several methods and finite-sample theories for individual stable autoregressive processes with known lag have become available very recently. We, instead, consider multiple stable autoregressive processes that share an unknown lag. We use information across the different processes to simultaneously select the lag and estimate the parameters. We prove that the estimated process is stable, and we establish rates for the forecasting error that can outmatch the known rate in our setting. Our insights on the lag selection and the stability are also of interest for the case of individual autoregressive processes.

相關內容

Step-selection models are widely used to study animals' fine-scale habitat selection based on movement data. Resource preferences and movement patterns, however, can depend on the animal's unobserved behavioural states, such as resting or foraging. This is ignored in standard (integrated) step-selection analyses (SSA, iSSA). While different approaches have emerged to account for such states in the analysis, the performance of such approaches and the consequences of ignoring the states in the analysis have rarely been quantified. We evaluated the recent idea of combining hidden Markov chains and iSSA in a single modelling framework. The resulting Markov-switching integrated step-selection analysis (MS-iSSA) allows for a joint estimation of both the underlying behavioural states and the associated state-dependent habitat selection. In an extensive simulation study, we compared the MS-iSSA to both the standard iSSA and a classification-based iSSA (i.e., a two-step approach based on a separate prior state classification). We further illustrate the three approaches in a case study on fine-scale interactions of simultaneously tracked bank voles (Myodes glareolus). The results indicate that standard iSSAs can lead to erroneous conclusions due to both biased estimates and unreliable p-values when ignoring underlying behavioural states. We found the same for iSSAs based on prior state-classifications, as they ignore misclassifications and classification uncertainties. The MS-iSSA, on the other hand, performed well in parameter estimation and decoding of behavioural states. To facilitate its use, we implemented the MS-iSSA approach in the R package msissa available on GitHub.

The work of Kalman and Bucy has established a duality between filtering and optimal estimation in the context of time-continuous linear systems. This duality has recently been extended to time-continuous nonlinear systems in terms of an optimization problem constrained by a backward stochastic partial differential equation. Here we revisit this problem from the perspective of appropriate forward-backward stochastic differential equations. This approach sheds new light on the estimation problem and provides a unifying perspective. It is also demonstrated that certain formulations of the estimation problem lead to deterministic formulations similar to the linear Gaussian case as originally investigated by Kalman and Bucy.

Gaussian process regression underpins countless academic and industrial applications of machine learning and statistics, with maximum likelihood estimation routinely used to select appropriate parameters for the covariance kernel. However, it remains an open problem to establish the circumstances in which maximum likelihood estimation is well-posed, that is, when the predictions of the regression model are insensitive to small perturbations of the data. This article identifies scenarios where the maximum likelihood estimator fails to be well-posed, in that the predictive distributions are not Lipschitz in the data with respect to the Hellinger distance. These failure cases occur in the noiseless data setting, for any Gaussian process with a stationary covariance function whose lengthscale parameter is estimated using maximum likelihood. Although the failure of maximum likelihood estimation is part of Gaussian process folklore, these rigorous theoretical results appear to be the first of their kind. The implication of these negative results is that well-posedness may need to be assessed post-hoc, on a case-by-case basis, when maximum likelihood estimation is used to train a Gaussian process model.

We deal with the problem of optimal estimation of the linear functionals constructed from unobserved values of a continuous time stochastic process with periodically correlated increments based on past observations of this process. To solve the problem, we construct a corresponding to the process sequence of stochastic functions which forms an infinite dimensional vector stationary increment sequence. In the case of known spectral density of the stationary increment sequence, we obtain formulas for calculating values of the mean square errors and the spectral characteristics of the optimal estimates of the functionals. Formulas determining the least favorable spectral densities and the minimax (robust) spectral characteristics of the optimal linear estimates of functionals are derived in the case where the sets of admissible spectral densities are given.

Understanding the time-varying structure of complex temporal systems is one of the main challenges of modern time series analysis. In this paper, we show that every uniformly-positive-definite-in-covariance and sufficiently short-range dependent non-stationary and nonlinear time series can be well approximated globally by a white-noise-driven auto-regressive (AR) process of slowly diverging order. To our best knowledge, it is the first time such a structural approximation result is established for general classes of non-stationary time series. A high dimensional $\mathcal{L}^2$ test and an associated multiplier bootstrap procedure are proposed for the inference of the AR approximation coefficients. In particular, an adaptive stability test is proposed to check whether the AR approximation coefficients are time-varying, a frequently-encountered question for practitioners and researchers of time series. As an application, globally optimal short-term forecasting theory and methodology for a wide class of locally stationary time series are established via the method of sieves.

Obtaining guarantees on the convergence of the minimizers of empirical risks to the ones of the true risk is a fundamental matter in statistical learning. Instead of deriving guarantees on the usual estimation error, the goal of this paper is to provide concentration inequalities on the distance between the sets of minimizers of the risks for a broad spectrum of estimation problems. In particular, the risks are defined on metric spaces through probability measures that are also supported on metric spaces. A particular attention will therefore be given to include unbounded spaces and non-convex cost functions that might also be unbounded. This work identifies a set of assumptions allowing to describe a regime that seem to govern the concentration in many estimation problems, where the empirical minimizers are stable. This stability can then be leveraged to prove parametric concentration rates in probability and in expectation. The assumptions are verified, and the bounds showcased, on a selection of estimation problems such as barycenters on metric space with positive or negative curvature, subspaces of covariance matrices, regression problems and entropic-Wasserstein barycenters.

We introduce a method to prove that a proof search method is not an instance of another. As an example of application, we show that Polarized resolution modulo, a method that mixes clause selection restrictions and literal selection restrictions, is not an instance of Ordered resolution with selection.

Development of robust concrete mixes with a lower environmental impact is challenging due to natural variability in constituent materials and a multitude of possible combinations of mix proportions. Making reliable property predictions with machine learning can facilitate performance-based specification of concrete, reducing material inefficiencies and improving the sustainability of concrete construction. In this work, we develop a machine learning algorithm that can utilize intermediate target variables and their associated noise to predict the final target variable. We apply the methodology to specify a concrete mix that has high resistance to carbonation, and another concrete mix that has low environmental impact. Both mixes also fulfill targets on the strength, density, and cost. The specified mixes are experimentally validated against their predictions. Our generic methodology enables the exploitation of noise in machine learning, which has a broad range of applications in structural engineering and beyond.

Under-approximations of reachable sets and tubes have been receiving growing research attention due to their important roles in control synthesis and verification. Available under-approximation methods applicable to continuous-time linear systems typically assume the ability to compute transition matrices and their integrals exactly, which is not feasible in general, and/or suffer from high computational costs. In this note, we attempt to overcome these drawbacks for a class of linear time-invariant (LTI) systems, where we propose a novel method to under-approximate finite-time forward reachable sets and tubes, utilizing approximations of the matrix exponential and its integral. In particular, we consider the class of continuous-time LTI systems with an identity input matrix and initial and input values belonging to full dimensional sets that are affine transformations of closed unit balls. The proposed method yields computationally efficient under-approximations of reachable sets and tubes, when implemented using zonotopes, with first-order convergence guarantees in the sense of the Hausdorff distance. To illustrate its performance, we implement our approach in three numerical examples, where linear systems of dimensions ranging between 2 and 200 are considered.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

北京阿比特科技有限公司