亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Class-incremental learning (CIL) aims to enable models to continuously learn new classes while overcoming catastrophic forgetting. The introduction of pre-trained models has brought new tuning paradigms to CIL. In this paper, we revisit different parameter-efficient tuning (PET) methods within the context of continual learning. We observe that adapter tuning demonstrates superiority over prompt-based methods, even without parameter expansion in each learning session. Motivated by this, we propose incrementally tuning the shared adapter without imposing parameter update constraints, enhancing the learning capacity of the backbone. Additionally, we employ feature sampling from stored prototypes to retrain a unified classifier, further improving its performance. We estimate the semantic shift of old prototypes without access to past samples and update stored prototypes session by session. Our proposed method eliminates model expansion and avoids retaining any image samples. It surpasses previous pre-trained model-based CIL methods and demonstrates remarkable continual learning capabilities. Experimental results on five CIL benchmarks validate the effectiveness of our approach, achieving state-of-the-art (SOTA) performance.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Current methods for few-shot action recognition mainly fall into the metric learning framework following ProtoNet, which demonstrates the importance of prototypes. Although they achieve relatively good performance, the effect of multimodal information is ignored, e.g. label texts. In this work, we propose a novel MultimOdal PRototype-ENhanced Network (MORN), which uses the semantic information of label texts as multimodal information to enhance prototypes. A CLIP visual encoder and a frozen CLIP text encoder are introduced to obtain features with good multimodal initialization. Then in the visual flow, visual prototypes are computed by a visual prototype-computed module. In the text flow, a semantic-enhanced (SE) module and an inflating operation are used to obtain text prototypes. The final multimodal prototypes are then computed by a multimodal prototype-enhanced (MPE) module. Besides, we define a PRototype SImilarity DiffErence (PRIDE) to evaluate the quality of prototypes, which is used to verify our improvement on the prototype level and effectiveness of MORN. We conduct extensive experiments on four popular few-shot action recognition datasets: HMDB51, UCF101, Kinetics and SSv2, and MORN achieves state-of-the-art results. When plugging PRIDE into the training stage, the performance can be further improved.

As a distributed machine learning paradigm, federated learning (FL) is collaboratively carried out on privately owned datasets but without direct data access. Although the original intention is to allay data privacy concerns, "available but not visible" data in FL potentially brings new security threats, particularly poisoning attacks that target such "not visible" local data. Initial attempts have been made to conduct data poisoning attacks against FL systems, but cannot be fully successful due to their high chance of causing statistical anomalies. To unleash the potential for truly "invisible" attacks and build a more deterrent threat model, in this paper, a new data poisoning attack model named VagueGAN is proposed, which can generate seemingly legitimate but noisy poisoned data by untraditionally taking advantage of generative adversarial network (GAN) variants. Capable of manipulating the quality of poisoned data on demand, VagueGAN enables to trade-off attack effectiveness and stealthiness. Furthermore, a cost-effective countermeasure named Model Consistency-Based Defense (MCD) is proposed to identify GAN-poisoned data or models after finding out the consistency of GAN outputs. Extensive experiments on multiple datasets indicate that our attack method is generally much more stealthy as well as more effective in degrading FL performance with low complexity. Our defense method is also shown to be more competent in identifying GAN-poisoned data or models. The source codes are publicly available at \href{//github.com/SSssWEIssSS/VagueGAN-Data-Poisoning-Attack-and-Its-Countermeasure}{//github.com/SSssWEIssSS/VagueGAN-Data-Poisoning-Attack-and-Its-Countermeasure}.

In-context learning (ICL), which promotes inference with several demonstrations, has become a widespread paradigm to stimulate LLM capabilities for downstream tasks. Due to context length constraints, it cannot be further improved in spite of more training data, and general features directly from LLMs in ICL are not adaptive to the specific downstream task. In this paper, we propose a feature-adaptive and data-scalable in-context learning framework (FADS-ICL), which can leverage task-adaptive features to promote inference on the downstream task, with the supervision of beyond-context samples. Specifically, it first extracts general features of beyond-context samples via the LLM with ICL input form one by one, and introduces a task-specific modulator to perform feature refinement and prediction after fitting a specific downstream task. We conduct extensive experiments on FADS-ICL under varying data settings (4$\sim$128 shots) and LLM scale (0.8$\sim$70B) settings. Experimental results show that FADS-ICL consistently outperforms previous state-of-the-art methods by a significant margin under all settings, verifying the effectiveness and superiority of FADS-ICL. For example, under the 1.5B and 32 shots setting, FADS-ICL can achieve \textbf{+14.3} average accuracy from feature adaptation over vanilla ICL on 10 datasets, with \textbf{+6.2} average accuracy over the previous state-of-the-art method, and the performance can further improve with increasing training data. Code and data are publicly available at \url{//github.com/jiahaozhenbang/FADS-ICL}.

We present a new approach to machine learning-powered combinatorial auctions, which is based on the principles of Differential Privacy. Our methodology guarantees that the auction mechanism is truthful, meaning that rational bidders have the incentive to reveal their true valuation functions. We achieve this by inducing truthfulness in the auction dynamics, ensuring that bidders consistently provide accurate information about their valuation functions. Our method not only ensures truthfulness but also preserves the efficiency of the original auction. This means that if the initial auction outputs an allocation with high social welfare, our modified truthful version of the auction will also achieve high social welfare. We use techniques from Differential Privacy, such as the Exponential Mechanism, to achieve these results. Additionally, we examine the application of differential privacy in auctions across both asymptotic and non-asymptotic regimes.

Large language models are well-known to be effective at few-shot in-context learning (ICL). Recent advancements in multimodal foundation models have enabled unprecedentedly long context windows, presenting an opportunity to explore their capability to perform ICL with many more demonstrating examples. In this work, we evaluate the performance of multimodal foundation models scaling from few-shot to many-shot ICL. We benchmark GPT-4o and Gemini 1.5 Pro across 10 datasets spanning multiple domains (natural imagery, medical imagery, remote sensing, and molecular imagery) and tasks (multi-class, multi-label, and fine-grained classification). We observe that many-shot ICL, including up to almost 2,000 multimodal demonstrating examples, leads to substantial improvements compared to few-shot (<100 examples) ICL across all of the datasets. Further, Gemini 1.5 Pro performance continues to improve log-linearly up to the maximum number of tested examples on many datasets. Given the high inference costs associated with the long prompts required for many-shot ICL, we also explore the impact of batching multiple queries in a single API call. We show that batching up to 50 queries can lead to performance improvements under zero-shot and many-shot ICL, with substantial gains in the zero-shot setting on multiple datasets, while drastically reducing per-query cost and latency. Finally, we measure ICL data efficiency of the models, or the rate at which the models learn from more demonstrating examples. We find that while GPT-4o and Gemini 1.5 Pro achieve similar zero-shot performance across the datasets, Gemini 1.5 Pro exhibits higher ICL data efficiency than GPT-4o on most datasets. Our results suggest that many-shot ICL could enable users to efficiently adapt multimodal foundation models to new applications and domains. Our codebase is publicly available at //github.com/stanfordmlgroup/ManyICL .

Federated learning (FL) enables collaborative model training while preserving data privacy, making it suitable for decentralized human-centered AI applications. However, a significant research gap remains in ensuring fairness in these systems. Current fairness strategies in FL require knowledge of bias-creating/sensitive attributes, clashing with FL's privacy principles. Moreover, in human-centered datasets, sensitive attributes may remain latent. To tackle these challenges, we present a novel bias mitigation approach inspired by "Fairness without Demographics" in machine learning. The presented approach achieves fairness without needing knowledge of sensitive attributes by minimizing the top eigenvalue of the Hessian matrix during training, ensuring equitable loss landscapes across FL participants. Notably, we introduce a novel FL aggregation scheme that promotes participating models based on error rates and loss landscape curvature attributes, fostering fairness across the FL system. This work represents the first approach to attaining "Fairness without Demographics" in human-centered FL. Through comprehensive evaluation, our approach demonstrates effectiveness in balancing fairness and efficacy across various real-world applications, FL setups, and scenarios involving single and multiple bias-inducing factors, representing a significant advancement in human-centered FL.

Federated learning (FL) is a distributed machine learning paradigm with high efficiency and low communication load, only transmitting parameters or gradients of network. However, the non-independent and identically distributed (Non-IID) data characteristic has a negative impact on this paradigm. Furthermore, the heterogeneity of communication quality will significantly affect the accuracy of parameter transmission, causing a degradation in the performance of the FL system or even preventing its convergence. This letter proposes a dual-segment clustering (DSC) strategy, which first clusters the clients according to the heterogeneous communication conditions and then performs a second clustering by the sample size and label distribution, so as to solve the problem of data and communication heterogeneity. Experimental results show that the DSC strategy proposed in this letter can improve the convergence rate of FL, and has superiority on accuracy in a heterogeneous environment compared with the classical algorithm of cluster.

Domain generalization aims to develop models that are robust to distribution shifts. Existing methods focus on learning invariance across domains to enhance model robustness, and data augmentation has been widely used to learn invariant predictors, with most methods performing augmentation in the input space. However, augmentation in the input space has limited diversity whereas in the feature space is more versatile and has shown promising results. Nonetheless, feature semantics is seldom considered and existing feature augmentation methods suffer from a limited variety of augmented features. We decompose features into class-generic, class-specific, domain-generic, and domain-specific components. We propose a cross-domain feature augmentation method named XDomainMix that enables us to increase sample diversity while emphasizing the learning of invariant representations to achieve domain generalization. Experiments on widely used benchmark datasets demonstrate that our proposed method is able to achieve state-of-the-art performance. Quantitative analysis indicates that our feature augmentation approach facilitates the learning of effective models that are invariant across different domains.

Class-incremental learning (CIL) has emerged as a means to learn new classes incrementally without catastrophic forgetting of previous classes. Recently, CIL has undergone a paradigm shift towards dynamic architectures due to their superior performance. However, these models are still limited by the following aspects: (i) Data augmentation (DA), which are tightly coupled with CIL, remains under-explored in dynamic architecture scenarios. (ii) Feature representation. The discriminativeness of dynamic feature are sub-optimal and possess potential for refinement. (iii) Classifier. The misalignment between dynamic feature and classifier constrains the capabilities of the model. To tackle the aforementioned drawbacks, we propose the Dynamic Feature Learning and Matching (DFLM) model in this paper from above three perspectives. Specifically, we firstly introduce class weight information and non-stationary functions to extend the mix DA method for dynamically adjusting the focus on memory during training. Then, von Mises-Fisher (vMF) classifier is employed to effectively model the dynamic feature distribution and implicitly learn their discriminative properties. Finally, the matching loss is proposed to facilitate the alignment between the learned dynamic features and the classifier by minimizing the distribution distance. Extensive experiments on CIL benchmarks validate that our proposed model achieves significant performance improvements over existing methods.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

北京阿比特科技有限公司