亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel and practical privacy notion called $f$-Membership Inference Privacy ($f$-MIP), which explicitly considers the capabilities of realistic adversaries under the membership inference attack threat model. Consequently, $f$-MIP offers interpretable privacy guarantees and improved utility (e.g., better classification accuracy). In particular, we derive a parametric family of $f$-MIP guarantees that we refer to as $\mu$-Gaussian Membership Inference Privacy ($\mu$-GMIP) by theoretically analyzing likelihood ratio-based membership inference attacks on stochastic gradient descent (SGD). Our analysis highlights that models trained with standard SGD already offer an elementary level of MIP. Additionally, we show how $f$-MIP can be amplified by adding noise to gradient updates. Our analysis further yields an analytical membership inference attack that offers two distinct advantages over previous approaches. First, unlike existing state-of-the-art attacks that require training hundreds of shadow models, our attack does not require any shadow model. Second, our analytical attack enables straightforward auditing of our privacy notion $f$-MIP. Finally, we quantify how various hyperparameters (e.g., batch size, number of model parameters) and specific data characteristics determine an attacker's ability to accurately infer a point's membership in the training set. We demonstrate the effectiveness of our method on models trained on vision and tabular datasets.

相關內容

In the standard formulation of the denoising problem, one is given a probabilistic model relating a latent variable $\Theta \in \Omega \subset \mathbb{R}^m \; (m\ge 1)$ and an observation $Z \in \mathbb{R}^d$ according to: $Z \mid \Theta \sim p(\cdot\mid \Theta)$ and $\Theta \sim G^*$, and the goal is to construct a map to recover the latent variable from the observation. The posterior mean, a natural candidate for estimating $\Theta$ from $Z$, attains the minimum Bayes risk (under the squared error loss) but at the expense of over-shrinking the $Z$, and in general may fail to capture the geometric features of the prior distribution $G^*$ (e.g., low dimensionality, discreteness, sparsity, etc.). To rectify these drawbacks, in this paper we take a new perspective on this denoising problem that is inspired by optimal transport (OT) theory and use it to propose a new OT-based denoiser at the population level setting. We rigorously prove that, under general assumptions on the model, our OT-based denoiser is well-defined and unique, and is closely connected to solutions to a Monge OT problem. We then prove that, under appropriate identifiability assumptions on the model, our OT-based denoiser can be recovered solely from information of the marginal distribution of $Z$ and the posterior mean of the model, after solving a linear relaxation problem over a suitable space of couplings that is reminiscent of a standard multimarginal OT (MOT) problem. In particular, thanks to Tweedie's formula, when the likelihood model $\{ p(\cdot \mid \theta) \}_{\theta \in \Omega}$ is an exponential family of distributions, the OT-based denoiser can be recovered solely from the marginal distribution of $Z$. In general, our family of OT-like relaxations is of interest in its own right and for the denoising problem suggests alternative numerical methods inspired by the rich literature on computational OT.

We give a fully dynamic algorithm maintaining a $(1-\varepsilon)$-approximate directed densest subgraph in $\tilde{O}(\log^3(n)/\varepsilon^6)$ amortized time or $\tilde{O}(\log^4(n)/\varepsilon^7)$ per edge update (where $\tilde{O}$ hides $\log\log$ factors), based on earlier work by Chekuri and Quanrud [arXiv:2210.02611]. This result improves on earlier work done by Sawlani and Wang [arXiv:1907.03037], which guarantees $O(\log^5(n)/\varepsilon^7)$ worst case time for edge insertions and deletions.

Let $X = \{X_{u}\}_{u \in U}$ be a real-valued Gaussian process indexed by a set $U$. It can be thought of as an undirected graphical model with every random variable $X_{u}$ serving as a vertex. We characterize this graph in terms of the covariance of $X$ through its reproducing kernel property. Unlike other characterizations in the literature, our characterization does not restrict the index set $U$ to be finite or countable, and hence can be used to model the intrinsic dependence structure of stochastic processes in continuous time/space. Consequently, this characterization is not in terms of the zero entries of an inverse covariance. This poses novel challenges for the problem of recovery of the dependence structure from a sample of independent realizations of $X$, also known as structure estimation. We propose a methodology that circumvents these issues, by targeting the recovery of the underlying graph up to a finite resolution, which can be arbitrarily fine and is limited only by the available sample size. The recovery is shown to be consistent so long as the graph is sufficiently regular in an appropriate sense. We derive corresponding convergence rates and finite sample guarantees. Our methodology is illustrated by means of a simulation study and two data analyses.

We propose a doxastic \L ukasiewicz logic \textbf{B\L} that is sound and complete with respect to the class of Kripke-based models in which atomic propositions and accessibility relations are both infinitely valued in the standard MV-algebra [0,1]. We also introduce some extensions of \textbf{B\L} corresponding to axioms \textbf{D}, \textbf{4}, and \textbf{T} of classical epistemic logic. Furthermore, completeness of these extensions are established corresponding to the appropriate classes of models.

This paper studies robust nonparametric regression, in which an adversarial attacker can modify the values of up to $q$ samples from a training dataset of size $N$. Our initial solution is an M-estimator based on Huber loss minimization. Compared with simple kernel regression, i.e. the Nadaraya-Watson estimator, this method can significantly weaken the impact of malicious samples on the regression performance. We provide the convergence rate as well as the corresponding minimax lower bound. The result shows that, with proper bandwidth selection, $\ell_\infty$ error is minimax optimal. The $\ell_2$ error is optimal with relatively small $q$, but is suboptimal with larger $q$. The reason is that this estimator is vulnerable if there are many attacked samples concentrating in a small region. To address this issue, we propose a correction method by projecting the initial estimate to the space of Lipschitz functions. The final estimate is nearly minimax optimal for arbitrary $q$, up to a $\ln N$ factor.

Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing. QECC, as its classical counterpart (ECC), enables the reduction of error rates, by distributing quantum logical information across redundant physical qubits, such that errors can be detected and corrected. In this work, we efficiently train novel {\emph{end-to-end}} deep quantum error decoders. We resolve the quantum measurement collapse by augmenting syndrome decoding to predict an initial estimate of the system noise, which is then refined iteratively through a deep neural network. The logical error rates calculated over finite fields are directly optimized via a differentiable objective, enabling efficient decoding under the constraints imposed by the code. Finally, our architecture is extended to support faulty syndrome measurement, by efficient decoding of repeated syndrome sampling. The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy, outperforming {for small distance topological codes,} the existing {end-to-end }neural and classical decoders, which are often computationally prohibitive.

A Verifiable Delay Function (VDF) is a function that takes a specified sequential time to be evaluated, but can be efficiently verified. VDFs are useful in several applications ranging from randomness beacons to sustainable blockchains but are really rare in practice. Most of the VDFs are based on algebraic assumptions like time-lock puzzle in unknown group orders [6, 8] and isogenies over pairing groups [4]. The number of modulo squaring required for verification in the time-lock puzzle based VDFs are proportional to their security parameter. This paper proposes a verifiable delay function that requires only 2- modulo squaring for verification. So the sequential effort required for verification is independent of the security parameter.

We consider the Distinct Shortest Walks problem. Given two vertices $s$ and $t$ of a graph database $\mathcal{D}$ and a regular path query, enumerate all walks of minimal length from $s$ to $t$ that carry a label that conforms to the query. Usual theoretical solutions turn out to be inefficient when applied to graph models that are closer to real-life systems, in particular because edges may carry multiple labels. Indeed, known algorithms may repeat the same answer exponentially many times. We propose an efficient algorithm for multi-labelled graph databases. The preprocessing runs in $O{|\mathcal{D}|\times|\mathcal{A}|}$ and the delay between two consecutive outputs is in $O(\lambda\times|\mathcal{A}|)$, where $\mathcal{A}$ is a nondeterministic automaton representing the query and $\lambda$ is the minimal length. The algorithm can handle $\varepsilon$-transitions in $\mathcal{A}$ or queries given as regular expressions at no additional cost.

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司