亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a doxastic \L ukasiewicz logic \textbf{B\L} that is sound and complete with respect to the class of Kripke-based models in which atomic propositions and accessibility relations are both infinitely valued in the standard MV-algebra [0,1]. We also introduce some extensions of \textbf{B\L} corresponding to axioms \textbf{D}, \textbf{4}, and \textbf{T} of classical epistemic logic. Furthermore, completeness of these extensions are established corresponding to the appropriate classes of models.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Abstract State Machines (ASMs) provide a model of computations on structures rather than strings. Blass, Gurevich and Shelah showed that deterministic PTIME-bounded ASMs define the choiceless fragment of PTIME, but cannot capture PTIME. In this article deterministic PSPACE-bounded ASMs are introduced, and it is proven that they cannot capture PSPACE. The key for the proof is a characterisation by partial fixed-point formulae over the St\"ark/Nanchen logic for deterministic ASMs and a construction of transitive structures, in which such formulae must hold. This construction exploits that the decisive support theorem for choiceless polynomial time holds under slightly weaker assumptions.

PPO (Proximal Policy Optimization) algorithm has demonstrated excellent performance in many fields, and it is considered as a simple version of TRPO (Trust Region Policy Optimization) algorithm. However, the ratio clipping operation in PPO may not always effectively enforce the trust region constraints, this can be a potential factor affecting the stability of the algorithm. In this paper, we propose SPO (Simple Policy Optimization) algorithm, which introduces a novel clipping method for KL divergence between the old and current policies. SPO can effectively enforce the trust region constraints in almost all environments, while still maintaining the simplicity of a first-order algorithm. Comparative experiments in Atari 2600 environments show that SPO sometimes provides stronger performance than PPO. Code is available at //github.com/MyRepositories-hub/Simple-Policy-Optimization.

Refreshable tactile displays (RTDs) are predicted to soon become a viable option for the provision of accessible graphics for people who are blind or have low vision (BLV). This new technology for the tactile display of braille and graphics, usually using raised pins, makes it easier to generate and access a large number of graphics. However, it differs from existing tactile graphics in terms of scale, height and fidelity. Here, we share the perspectives of four key stakeholders -- blind touch readers, vision specialist teachers, accessible format producers and assistive technology providers -- to explore the potential uses, advantages and needs relating to the introduction of RTDs. We also provide advice on what role the data visualisation community can take to help ensure that people who are BLV are best able to benefit from the introduction of affordable RTDs.

Differential privacy has emerged as an significant cornerstone in the realm of scientific hypothesis testing utilizing confidential data. In reporting scientific discoveries, Bayesian tests are widely adopted since they effectively circumnavigate the key criticisms of P-values, namely, lack of interpretability and inability to quantify evidence in support of the competing hypotheses. We present a novel differentially private Bayesian hypotheses testing framework that arise naturally under a principled data generative mechanism, inherently maintaining the interpretability of the resulting inferences. Furthermore, by focusing on differentially private Bayes factors based on widely used test statistics, we circumvent the need to model the complete data generative mechanism and ensure substantial computational benefits. We also provide a set of sufficient conditions to establish results on Bayes factor consistency under the proposed framework. The utility of the devised technology is showcased via several numerical experiments.

Symmetric multilevel diversity coding (SMDC) is a source coding problem where the independent sources are ordered according to their importance. It was shown that separately encoding independent sources (referred to as ``\textit{superposition coding}") is optimal. In this paper, we consider an $(L,s)$ \textit{sliding secure} SMDC problem with security priority, where each source $X_{\alpha}~(s\leq \alpha\leq L)$ is kept perfectly secure if no more than $\alpha-s$ encoders are accessible. The reconstruction requirements of the $L$ sources are the same as classical SMDC. A special case of an $(L,s)$ sliding secure SMDC problem that the first $s-1$ sources are constants is called the $(L,s)$ \textit{multilevel secret sharing} problem. For $s=1$, the two problems coincide, and we show that superposition coding is optimal. The rate regions for the $(3,2)$ problems are characterized. It is shown that superposition coding is suboptimal for both problems. The main idea that joint encoding can reduce coding rates is that we can use the previous source $X_{\alpha-1}$ as the secret key of $X_{\alpha}$. Based on this idea, we propose a coding scheme that achieves the minimum sum rate of the general $(L,s)$ multilevel secret sharing problem. Moreover, superposition coding of the $s$ sets of sources $X_1$, $X_2$, $\cdots$, $X_{s-1}$, $(X_s, X_{s+1}, \cdots, X_L)$ achieves the minimum sum rate of the general sliding secure SMDC problem.

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

北京阿比特科技有限公司