亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Enhancing the robustness of vision algorithms in real-world scenarios is challenging. One reason is that existing robustness benchmarks are limited, as they either rely on synthetic data or ignore the effects of individual nuisance factors. We introduce OOD-CV, a benchmark dataset that includes out-of-distribution examples of 10 object categories in terms of pose, shape, texture, context and the weather conditions, and enables benchmarking models for image classification, object detection, and 3D pose estimation. In addition to this novel dataset, we contribute extensive experiments using popular baseline methods, which reveal that: 1. Some nuisance factors have a much stronger negative effect on the performance compared to others, also depending on the vision task. 2. Current approaches to enhance robustness have only marginal effects, and can even reduce robustness. 3. We do not observe significant differences between convolutional and transformer architectures. We believe our dataset provides a rich testbed to study robustness and will help push forward research in this area.

相關內容

Semantic segmentation is a challenging computer vision task demanding a significant amount of pixel-level annotated data. Producing such data is a time-consuming and costly process, especially for domains with a scarcity of experts, such as medicine or forensic anthropology. While numerous semi-supervised approaches have been developed to make the most from the limited labeled data and ample amount of unlabeled data, domain-specific real-world datasets often have characteristics that both reduce the effectiveness of off-the-shelf state-of-the-art methods and also provide opportunities to create new methods that exploit these characteristics. We propose and evaluate a semi-supervised method that reuses available labels for unlabeled images of a dataset by exploiting existing similarities, while dynamically weighting the impact of these reused labels in the training process. We evaluate our method on a large dataset of human decomposition images and find that our method, while conceptually simple, outperforms state-of-the-art consistency and pseudo-labeling-based methods for the segmentation of this dataset. This paper includes graphic content of human decomposition.

The use of synthetic (or simulated) data for training machine learning models has grown rapidly in recent years. Synthetic data can often be generated much faster and more cheaply than its real-world counterpart. One challenge of using synthetic imagery however is scene design: e.g., the choice of content and its features and spatial arrangement. To be effective, this design must not only be realistic, but appropriate for the target domain, which (by assumption) is unlabeled. In this work, we propose an approach to automatically choose the design of synthetic imagery based upon unlabeled real-world imagery. Our approach, termed Neural-Adjoint Meta-Simulation (NAMS), builds upon the seminal recent meta-simulation approaches. In contrast to the current state-of-the-art methods, our approach can be pre-trained once offline, and then provides fast design inference for new target imagery. Using both synthetic and real-world problems, we show that NAMS infers synthetic designs that match both the in-domain and out-of-domain target imagery, and that training segmentation models with NAMS-designed imagery yields superior results compared to na\"ive randomized designs and state-of-the-art meta-simulation methods.

Assuming a known degradation model, the performance of a learned image super-resolution (SR) model depends on how well the variety of image characteristics within the training set matches those in the test set. As a result, the performance of an SR model varies noticeably from image to image over a test set depending on whether characteristics of specific images are similar to those in the training set or not. Hence, in general, a single SR model cannot generalize well enough for all types of image content. In this work, we show that training multiple SR models for different classes of images (e.g., for text, texture, etc.) to exploit class-specific image priors and employing a post-processing network that learns how to best fuse the outputs produced by these multiple SR models surpasses the performance of state-of-the-art generic SR models. Experimental results clearly demonstrate that the proposed multiple-model SR (MMSR) approach significantly outperforms a single pre-trained state-of-the-art SR model both quantitatively and visually. It even exceeds the performance of the best single class-specific SR model trained on similar text or texture images.

Several existing works study either adversarial or natural distributional robustness of deep neural networks separately. In practice, however, models need to enjoy both types of robustness to ensure reliability. In this work, we bridge this gap and show that in fact, explicit tradeoffs exist between adversarial and natural distributional robustness. We first consider a simple linear regression setting on Gaussian data with disjoint sets of core and spurious features. In this setting, through theoretical and empirical analysis, we show that (i) adversarial training with $\ell_1$ and $\ell_2$ norms increases the model reliance on spurious features; (ii) For $\ell_\infty$ adversarial training, spurious reliance only occurs when the scale of the spurious features is larger than that of the core features; (iii) adversarial training can have an unintended consequence in reducing distributional robustness, specifically when spurious correlations are changed in the new test domain. Next, we present extensive empirical evidence, using a test suite of twenty adversarially trained models evaluated on five benchmark datasets (ObjectNet, RIVAL10, Salient ImageNet-1M, ImageNet-9, Waterbirds), that adversarially trained classifiers rely on backgrounds more than their standardly trained counterparts, validating our theoretical results. We also show that spurious correlations in training data (when preserved in the test domain) can improve adversarial robustness, revealing that previous claims that adversarial vulnerability is rooted in spurious correlations are incomplete.

Recently vision transformers have been shown to be competitive with convolution-based methods (CNNs) broadly across multiple vision tasks. The less restrictive inductive bias of transformers endows greater representational capacity in comparison with CNNs. However, in the image classification setting this flexibility comes with a trade-off with respect to sample efficiency, where transformers require ImageNet-scale training. This notion has carried over to video where transformers have not yet been explored for video classification in the low-labeled or semi-supervised settings. Our work empirically explores the low data regime for video classification and discovers that, surprisingly, transformers perform extremely well in the low-labeled video setting compared to CNNs. We specifically evaluate video vision transformers across two contrasting video datasets (Kinetics-400 and SomethingSomething-V2) and perform thorough analysis and ablation studies to explain this observation using the predominant features of video transformer architectures. We even show that using just the labeled data, transformers significantly outperform complex semi-supervised CNN methods that leverage large-scale unlabeled data as well. Our experiments inform our recommendation that semi-supervised learning video work should consider the use of video transformers in the future.

Distributional shift, or the mismatch between training and deployment data, is a significant obstacle to the usage of machine learning in high-stakes industrial applications, such as autonomous driving and medicine. This creates a need to be able to assess how robustly ML models generalize as well as the quality of their uncertainty estimates. Standard ML baseline datasets do not allow these properties to be assessed, as the training, validation and test data are often identically distributed. Recently, a range of dedicated benchmarks have appeared, featuring both distributionally matched and shifted data. Among these benchmarks, the Shifts dataset stands out in terms of the diversity of tasks as well as the data modalities it features. While most of the benchmarks are heavily dominated by 2D image classification tasks, Shifts contains tabular weather forecasting, machine translation, and vehicle motion prediction tasks. This enables the robustness properties of models to be assessed on a diverse set of industrial-scale tasks and either universal or directly applicable task-specific conclusions to be reached. In this paper, we extend the Shifts Dataset with two datasets sourced from industrial, high-risk applications of high societal importance. Specifically, we consider the tasks of segmentation of white matter Multiple Sclerosis lesions in 3D magnetic resonance brain images and the estimation of power consumption in marine cargo vessels. Both tasks feature ubiquitous distributional shifts and a strict safety requirement due to the high cost of errors. These new datasets will allow researchers to further explore robust generalization and uncertainty estimation in new situations. In this work, we provide a description of the dataset and baseline results for both tasks.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

Multi-view networks are ubiquitous in real-world applications. In order to extract knowledge or business value, it is of interest to transform such networks into representations that are easily machine-actionable. Meanwhile, network embedding has emerged as an effective approach to generate distributed network representations. Therefore, we are motivated to study the problem of multi-view network embedding, with a focus on the characteristics that are specific and important in embedding this type of networks. In our practice of embedding real-world multi-view networks, we identify two such characteristics, which we refer to as preservation and collaboration. We then explore the feasibility of achieving better embedding quality by simultaneously modeling preservation and collaboration, and propose the mvn2vec algorithms. With experiments on a series of synthetic datasets, an internal Snapchat dataset, and two public datasets, we further confirm the presence and importance of preservation and collaboration. These experiments also demonstrate that better embedding can be obtained by simultaneously modeling the two characteristics, while not over-complicating the model or requiring additional supervision.

北京阿比特科技有限公司