亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Forensic experts use specialized training and knowledge to enable other members of the judicial system to make better informed and more just decisions. Factfinders, in particular, are tasked with judging how much weight to give to experts' reports and opinions. Many references describe assessing evidential weight from the perspective of a forensic expert. Some recognize that stakeholders are each responsible for evaluating their own weight of evidence. Morris (1971, 1974, 1977) provided a general framework for recipients to update their own uncertainties after learning an expert's opinion. Although this framework is normative under Bayesian axioms and several forensic scholars advocate the use of Bayesian reasoning, few resources describe its application in forensic science. This paper addresses this gap by examining how recipients can combine principles of science and Bayesian reasoning to evaluate their own likelihood ratios for expert opinions. This exercise helps clarify how an expert's role depends on whether one envisions recipients to be logical and scientific or deferential. Illustrative examples with an expert's opinion expressed as a categorical conclusion, likelihood ratio, or range of likelihood ratios, or with likelihood ratios from multiple experts, each reveal the importance and influence of validation data for logical recipients' interpretations.

相關內容

This study investigates the consequences of training language models on synthetic data generated by their predecessors, an increasingly prevalent practice given the prominence of powerful generative models. Diverging from the usual emphasis on performance metrics, we focus on the impact of this training methodology on linguistic diversity, especially when conducted recursively over time. To assess this, we adapt and develop a set of novel metrics targeting lexical, syntactic, and semantic diversity, applying them in recursive finetuning experiments across various natural language generation tasks in English. Our findings reveal a consistent decrease in the diversity of the model outputs through successive iterations, especially remarkable for tasks demanding high levels of creativity. This trend underscores the potential risks of training language models on synthetic text, particularly concerning the preservation of linguistic richness. Our study highlights the need for careful consideration of the long-term effects of such training approaches on the linguistic capabilities of language models.

Tabletop exercises are used to train personnel in the efficient mitigation and resolution of incidents. They are applied in practice to support the preparedness of organizations and to highlight inefficient processes. Since tabletop exercises train competencies required in the workplace, they have been introduced into computing courses at universities as an innovation, especially within cybersecurity curricula. To help computing educators adopt this innovative method, we survey academic publications that deal with tabletop exercises. From 140 papers we identified and examined, we selected 14 papers for a detailed review. The results show that the existing research deals predominantly with exercises that follow a linear format and exercises that do not systematically collect data about trainees' learning. Computing education researchers can investigate novel approaches to instruction and assessment in the context of tabletop exercises to maximize the impact of this teaching method. Due to the relatively low number of published papers, the potential for future research is immense. Our review provides researchers, tool developers, and educators with an orientation in the area, a synthesis of trends, and implications for further work.

Rule learning is critical to improving knowledge graph (KG) reasoning due to their ability to provide logical and interpretable explanations. Recently, Graph Neural Networks (GNNs) with tail entity scoring achieve the state-of-the-art performance on KG reasoning. However, the theoretical understandings for these GNNs are either lacking or focusing on single-relational graphs, leaving what the kind of rules these GNNs can learn an open problem. We propose to fill the above gap in this paper. Specifically, GNNs with tail entity scoring are unified into a common framework. Then, we analyze their expressivity by formally describing the rule structures they can learn and theoretically demonstrating their superiority. These results further inspire us to propose a novel labeling strategy to learn more rules in KG reasoning. Experimental results are consistent with our theoretical findings and verify the effectiveness of our proposed method. The code is publicly available at //github.com/LARS-research/Rule-learning-expressivity.

The allocation of computing tasks for networked distributed services poses a question to service providers on whether centralized allocation management be worth its cost. Existing analytical models were conceived for users accessing computing resources with practically indistinguishable (hence irrelevant for the allocation decision) delays, which is typical of services located in the same distant data center. However, with the rise of the edge-cloud continuum, a simple analysis of the sojourn time that computing tasks observe at the server misses the impact of diverse latency values imposed by server locations. We therefore study the optimization of computing task allocation with a new model that considers both distance of servers and sojourn time in servers. We derive exact algorithms to optimize the system and we show, through numerical analysis and real experiments, that differences in server location in the edge-cloud continuum cannot be neglected. By means of algorithmic game theory, we study the price of anarchy of a distributed implementation of the computing task allocation problem and unveil important practical properties such as the fact that the price of anarchy tends to be small -- except when the system is overloaded -- and its maximum can be computed with low complexity.

The integration of ChatGPT as a supportive tool in education, notably in programming courses, addresses the unique challenges of programming education by providing assistance with debugging, code generation, and explanations. Despite existing research validating ChatGPT's effectiveness, its application in university-level programming education and a detailed understanding of student interactions and perspectives remain limited. This paper explores ChatGPT's impact on learning in a Python programming course tailored for first-year students over eight weeks. By analyzing responses from surveys, open-ended questions, and student-ChatGPT dialog data, we aim to provide a comprehensive view of ChatGPT's utility and identify both its advantages and limitations as perceived by students. Our study uncovers a generally positive reception toward ChatGPT and offers insights into its role in enhancing the programming education experience. These findings contribute to the broader discourse on AI's potential in education, suggesting paths for future research and application.

The technique of forgetting in knowledge representation has been shown to be a powerful and useful knowledge engineering tool with widespread application. Yet, very little research has been done on how different policies of forgetting, or use of different forgetting operators, affects the inferential strength of the original theory. The goal of this paper is to define loss functions for measuring changes in inferential strength based on intuitions from model counting and probability theory. Properties of such loss measures are studied and a pragmatic knowledge engineering tool is proposed for computing loss measures using Problog. The paper includes a working methodology for studying and determining the strength of different forgetting policies, in addition to concrete examples showing how to apply the theoretical results using Problog. Although the focus is on forgetting, the results are much more general and should have wider application to other areas.

Recent statistical and reinforcement learning methods have significantly advanced patient care strategies. However, these approaches face substantial challenges in high-stakes contexts, including missing data, inherent stochasticity, and the critical requirements for interpretability and patient safety. Our work operationalizes a safe and interpretable framework to identify optimal treatment regimes. This approach involves matching patients with similar medical and pharmacological characteristics, allowing us to construct an optimal policy via interpolation. We perform a comprehensive simulation study to demonstrate the framework's ability to identify optimal policies even in complex settings. Ultimately, we operationalize our approach to study regimes for treating seizures in critically ill patients. Our findings strongly support personalized treatment strategies based on a patient's medical history and pharmacological features. Notably, we identify that reducing medication doses for patients with mild and brief seizure episodes while adopting aggressive treatment for patients in intensive care unit experiencing intense seizures leads to more favorable outcomes.

The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司