亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The digital era has raised many societal challenges, including ICT's rising energy consumption and protecting privacy of personal data processing. This paper considers both aspects in relation to machine learning accuracy in an interdisciplinary exploration. We first present a method to measure the effects of privacy-enhancing techniques on data utility and energy consumption. The environmental-privacy-accuracy trade-offs are discovered through an experimental set-up. We subsequently take a storytelling approach to translate these technical findings to experts in non-ICT fields. We draft two examples for a governmental and auditing setting to contextualise our results. Ultimately, users face the task of optimising their data processing operations in a trade-off between energy, privacy, and accuracy considerations where the impact of their decisions is context-sensitive.

相關內容

機器學習系統設計系統評估標準

We present a novel variational derivation of the Maxwell-GLM system, which augments the original vacuum Maxwell equations via a generalized Lagrangian multiplier approach (GLM) by adding two supplementary acoustic subsystems and which was originally introduced by Munz et al. for purely numerical purposes in order to treat the divergence constraints of the magnetic and the electric field in the vacuum Maxwell equations within general-purpose and non-structure-preserving numerical schemes for hyperbolic PDE. Among the many mathematically interesting features of the model are: i) its symmetric hyperbolicity, ii) the extra conservation law for the total energy density and, most importantly, iii) the very peculiar combination of the basic differential operators, since both, curl-curl and div-grad combinations are mixed within this kind of system. A similar mixture of Maxwell-type and acoustic-type subsystems has recently been also forwarded by Buchman et al. in the context of a reformulation of the Einstein field equations of general relativity in terms of tetrads. This motivates our interest in this class of PDE, since the system is by itself very interesting from a mathematical point of view and can therefore serve as useful prototype system for the development of new structure-preserving numerical methods. Up to now, to the best of our knowledge, there exists neither a rigorous variational derivation of this class of hyperbolic PDE systems, nor do exactly energy-conserving and asymptotic-preserving schemes exist for them. The objectives of this paper are to derive the Maxwell-GLM system from an underlying variational principle, show its consistency with Hamiltonian mechanics and special relativity, extend it to the general nonlinear case and to develop new exactly energy-conserving and asymptotic-preserving finite volume schemes for its discretization.

The rapid development of modern artificial intelligence (AI) systems has created an urgent need for their scientific quantification. While their fluency across a variety of domains is impressive, modern AI systems fall short on tests requiring symbolic processing and abstraction - a glaring limitation given the necessity for interpretable and reliable technology. Despite a surge of reasoning benchmarks emerging from the academic community, no comprehensive and theoretically-motivated framework exists to quantify reasoning (and more generally, symbolic ability) in AI systems. Here, we adopt a framework from computational complexity theory to explicitly quantify symbolic generalization: algebraic circuit complexity. Many symbolic reasoning problems can be recast as algebraic expressions. Thus, algebraic circuit complexity theory - the study of algebraic expressions as circuit models (i.e., directed acyclic graphs) - is a natural framework to study the complexity of symbolic computation. The tools of algebraic circuit complexity enable the study of generalization by defining benchmarks in terms of their complexity-theoretic properties (i.e., the difficulty of a problem). Moreover, algebraic circuits are generic mathematical objects; for a given algebraic circuit, an arbitrarily large number of samples can be generated for a specific circuit, making it an optimal testbed for the data-hungry machine learning algorithms that are used today. Here, we adopt tools from algebraic circuit complexity theory, apply it to formalize a science of symbolic generalization, and address key theoretical and empirical challenges for its successful application to AI science and its impact on the broader community.

We first present a simple recursive algorithm that generates cyclic rotation Gray codes for stamp foldings and semi-meanders, where consecutive strings differ by a stamp rotation. These are the first known Gray codes for stamp foldings and semi-meanders, and we thus solve an open problem posted by Sawada and Li in [Electron. J. Comb. 19(2), 2012]. We then introduce an iterative algorithm that generates the same rotation Gray codes for stamp foldings and semi-meanders. Both the recursive and iterative algorithms generate stamp foldings and semi-meanders in constant amortized time and $O(n)$-amortized time per string respectively, using a linear amount of memory.

Understanding the global organization of complicated and high dimensional data is of primary interest for many branches of applied sciences. It is typically achieved by applying dimensionality reduction techniques mapping the considered data into lower dimensional space. This family of methods, while preserving local structures and features, often misses the global structure of the dataset. Clustering techniques are another class of methods operating on the data in the ambient space. They group together points that are similar according to a fixed similarity criteria, however unlike dimensionality reduction techniques, they do not provide information about the global organization of the data. Leveraging ideas from Topological Data Analysis, in this paper we provide an additional layer on the output of any clustering algorithm. Such data structure, ClusterGraph, provides information about the global layout of clusters, obtained from the considered clustering algorithm. Appropriate measures are provided to assess the quality and usefulness of the obtained representation. Subsequently the ClusterGraph, possibly with an appropriate structure--preserving simplification, can be visualized and used in synergy with state of the art exploratory data analysis techniques.

We propose a simple methodology to approximate functions with given asymptotic behavior by specifically constructed terms and an unconstrained deep neural network (DNN). The methodology we describe extends to various asymptotic behaviors and multiple dimensions and is easy to implement. In this work we demonstrate it for linear asymptotic behavior in one-dimensional examples. We apply it to function approximation and regression problems where we measure approximation of only function values (``Vanilla Machine Learning''-VML) or also approximation of function and derivative values (``Differential Machine Learning''-DML) on several examples. We see that enforcing given asymptotic behavior leads to better approximation and faster convergence.

We consider quantum circuit models where the gates are drawn from arbitrary gate ensembles given by probabilistic distributions over certain gate sets and circuit architectures, which we call stochastic quantum circuits. Of main interest in this work is the speed of convergence of stochastic circuits with different gate ensembles and circuit architectures to unitary t-designs. A key motivation for this theory is the varying preference for different gates and circuit architectures in different practical scenarios. In particular, it provides a versatile framework for devising efficient circuits for implementing $t$-designs and relevant applications including random circuit and scrambling experiments, as well as benchmarking the performance of gates and circuit architectures. We examine various important settings in depth. A key aspect of our study is an "ironed gadget" model, which allows us to systematically evaluate and compare the convergence efficiency of entangling gates and circuit architectures. Particularly notable results include i) gadgets of two-qubit gates with KAK coefficients $\left(\frac{\pi}{4}-\frac{1}{8}\arccos(\frac{1}{5}),\frac{\pi}{8},\frac{1}{8}\arccos(\frac{1}{5})\right)$ (which we call $\chi$ gates) directly form exact 2- and 3-designs; ii) the iSWAP gate family achieves the best efficiency for convergence to 2-designs under mild conjectures with numerical evidence, even outperforming the Haar-random gate, for generic many-body circuits; iii) iSWAP + complete graph achieve the best efficiency for convergence to 2-designs among all graph circuits. A variety of numerical results are provided to complement our analysis. We also derive robustness guarantees for our analysis against gate perturbations. Additionally, we provide cursory analysis on gates with higher locality and found that the Margolus gate outperforms various other well-known gates.

After nearly two decades of research, the question of a quantum PCP theorem for quantum Constraint Satisfaction Problems (CSPs) remains wide open. As a result, proving QMA-hardness of approximation for ground state energy estimation has remained elusive. Recently, it was shown [Bittel, Gharibian, Kliesch, CCC 2023] that a natural problem involving variational quantum circuits is QCMA-hard to approximate within ratio N^(1-eps) for any eps > 0 and N the input size. Unfortunately, this problem was not related to quantum CSPs, leaving the question of hardness of approximation for quantum CSPs open. In this work, we show that if instead of focusing on ground state energies, one considers computing properties of the ground space, QCMA-hardness of computing ground space properties can be shown. In particular, we show that it is (1) QCMA-complete within ratio N^(1-eps) to approximate the Ground State Connectivity problem (GSCON), and (2) QCMA-hard within the same ratio to estimate the amount of entanglement of a local Hamiltonian's ground state, denoted Ground State Entanglement (GSE). As a bonus, a simplification of our construction yields NP-completeness of approximation for a natural k-SAT reconfiguration problem, to be contrasted with the recent PCP-based PSPACE hardness of approximation results for a different definition of k-SAT reconfiguration [Karthik C.S. and Manurangsi, 2023, and Hirahara, Ohsaka, STOC 2024].

In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.

In the present work, strong approximation errors are analyzed for both the spatial semi-discretization and the spatio-temporal fully discretization of stochastic wave equations (SWEs) with cubic polynomial nonlinearities and additive noises. The fully discretization is achieved by the standard Galerkin ffnite element method in space and a novel exponential time integrator combined with the averaged vector ffeld approach. The newly proposed scheme is proved to exactly satisfy a trace formula based on an energy functional. Recovering the convergence rates of the scheme, however, meets essential difffculties, due to the lack of the global monotonicity condition. To overcome this issue, we derive the exponential integrability property of the considered numerical approximations, by the energy functional. Armed with these properties, we obtain the strong convergence rates of the approximations in both spatial and temporal direction. Finally, numerical results are presented to verify the previously theoretical findings.

Graph neural networks (GNNs) provide state-of-the-art results in a wide variety of tasks which typically involve predicting features at the vertices of a graph. They are built from layers of graph convolutions which serve as a powerful inductive bias for describing the flow of information among the vertices. Often, more than one data modality is available. This work considers a setting in which several graphs have the same vertex set and a common vertex-level learning task. This generalizes standard GNN models to GNNs with several graph operators that do not commute. We may call this model graph-tuple neural networks (GtNN). In this work, we develop the mathematical theory to address the stability and transferability of GtNNs using properties of non-commuting non-expansive operators. We develop a limit theory of graphon-tuple neural networks and use it to prove a universal transferability theorem that guarantees that all graph-tuple neural networks are transferable on convergent graph-tuple sequences. In particular, there is no non-transferable energy under the convergence we consider here. Our theoretical results extend well-known transferability theorems for GNNs to the case of several simultaneous graphs (GtNNs) and provide a strict improvement on what is currently known even in the GNN case. We illustrate our theoretical results with simple experiments on synthetic and real-world data. To this end, we derive a training procedure that provably enforces the stability of the resulting model.

北京阿比特科技有限公司