亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Discovering the partial differential equations underlying spatio-temporal datasets from very limited and highly noisy observations is of paramount interest in many scientific fields. However, it remains an open question to know when model discovery algorithms based on sparse regression can actually recover the underlying physical processes. In this work, we show the design matrices used to infer the equations by sparse regression can violate the irrepresentability condition (IRC) of the Lasso, even when derived from analytical PDE solutions (i.e. without additional noise). Sparse regression techniques which can recover the true underlying model under violated IRC conditions are therefore required, leading to the introduction of the randomised adaptive Lasso. We show once the latter is integrated within the deep learning model discovery framework DeepMod, a wide variety of nonlinear and chaotic canonical PDEs can be recovered: (1) up to $\mathcal{O}(2)$ higher noise-to-sample ratios than state-of-the-art algorithms, (2) with a single set of hyperparameters, which paves the road towards truly automated model discovery.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 稀疏 · 貝葉斯線性回歸 · · 學成 ·
2021 年 11 月 29 日

Scientific machine learning has been successfully applied to inverse problems and PDE discovery in computational physics. One caveat concerning current methods is the need for large amounts of ("clean") data, in order to characterize the full system response and discover underlying physical models. Bayesian methods may be particularly promising for overcoming these challenges, as they are naturally less sensitive to the negative effects of sparse and noisy data. In this paper, we propose to use Bayesian neural networks (BNN) in order to: 1) Recover the full system states from measurement data (e.g. temperature, velocity field, etc.). We use Hamiltonian Monte-Carlo to sample the posterior distribution of a deep and dense BNN, and show that it is possible to accurately capture physics of varying complexity, without overfitting. 2) Recover the parameters instantiating the underlying partial differential equation (PDE) governing the physical system. Using the trained BNN, as a surrogate of the system response, we generate datasets of derivatives that are potentially comprising the latent PDE governing the observed system and then perform a sequential threshold Bayesian linear regression (STBLR), between the successive derivatives in space and time, to recover the original PDE parameters. We take advantage of the confidence intervals within the BNN outputs, and introduce the spatial derivatives cumulative variance into the STBLR likelihood, to mitigate the influence of highly uncertain derivative data points; thus allowing for more accurate parameter discovery. We demonstrate our approach on a handful of example, in applied physics and non-linear dynamics.

We show that the nonstandard limiting distribution of HAR test statistics under fixed-b asymptotics is not pivotal (even after studentization) when the data are nonstationarity. It takes the form of a complicated function of Gaussian processes and depends on the integrated local long-run variance and on on the second moments of the relevant series (e.g., of the regressors and errors for the case of the linear regression model). Hence, existing fixed-b inference methods based on stationarity are not theoretically valid in general. The nuisance parameters entering the fixed-b limiting distribution can be consistently estimated under small-b asymptotics but only with nonparametric rate of convergence. Hence, We show that the error in rejection probability (ERP) is an order of magnitude larger than that under stationarity and is also larger than that of HAR tests based on HAC estimators under conventional asymptotics. These theoretical results reconcile with recent finite-sample evidence in Casini (2021) and Casini, Deng and Perron (2021) who showing that fixed-b HAR tests can perform poorly when the data are nonstationary. They can be conservative under the null hypothesis and have non-monotonic power under the alternative hypothesis irrespective of how large the sample size is.

We study the connections between the notions of combinatorial discrepancy and graph degeneracy. In particular, we prove that the maximum discrepancy over all subgraphs $H$ of a graph $G$ of the neighborhood set system of $H$ is sandwiched between $\Omega(\log\mathrm{deg}(G))$ and $\mathcal{O}(\mathrm{deg}(G))$, where $\mathrm{deg}(G)$ denotes the degeneracy of $G$. We extend this result to inequalities relating weak coloring numbers and discrepancy of graph powers and deduce a new characterization of bounded expansion classes. Then, we switch to a model theoretical point of view, introduce pointer structures, and study their relations to graph classes with bounded expansion. We deduce that a monotone class of graphs has bounded expansion if and only if all the set systems definable in this class have bounded hereditary discrepancy. Using known bounds on the VC-density of set systems definable in nowhere dense classes we also give a characterization of nowhere dense classes in terms of discrepancy. As consequences of our results, we obtain a corollary on the discrepancy of neighborhood set systems of edge colored graphs, a polynomial-time algorithm to compute $\varepsilon$-approximations of size $\mathcal{O}(1/\varepsilon)$ for set systems definable in bounded expansion classes, an application to clique coloring, and even the non-existence of a quantifier elimination scheme for nowhere dense classes.

A distributional symmetry is invariance of a distribution under a group of transformations. Exchangeability and stationarity are examples. We explain that a result of ergodic theory provides a law of large numbers: If the group satisfies suitable conditions, expectations can be estimated by averaging over subsets of transformations, and these estimators are strongly consistent. We show that, if a mixing condition holds, the averages also satisfy a central limit theorem, a Berry-Esseen bound, and concentration. These are extended further to apply to triangular arrays, to randomly subsampled averages, and to a generalization of U-statistics. As applications, we obtain new results on exchangeability, random fields, network models, and a class of marked point processes. We also establish asymptotic normality of the empirical entropy for a large class of processes. Some known results are recovered as special cases, and can hence be interpreted as an outcome of symmetry. The proofs adapt Stein's method.

It is well-known that an algorithm exists which approximates the NP-complete problem of Set Cover within a factor of ln(n), and it was recently proven that this approximation ratio is optimal unless P = NP. This optimality result is the product of many advances in characterizations of NP, in terms of interactive proof systems and probabilistically checkable proofs (PCP), and improvements to the analyses thereof. However, as a result, it is difficult to extract the development of Set Cover approximation bounds from the greater scope of proof system analysis. This paper attempts to present a chronological progression of results on lower-bounding the approximation ratio of Set Cover. We analyze a series of proofs of progressively better bounds and unify the results under similar terminologies and frameworks to provide an accurate comparison of proof techniques and their results. We also treat many preliminary results as black-boxes to better focus our analysis on the core reductions to Set Cover instances. The result is alternative versions of several hardness proofs, beginning with initial inapproximability results and culminating in a version of the proof that ln(n) is a tight lower bound.

In this paper a class of optimization problems with uncertain linear constraints is discussed. It is assumed that the constraint coefficients are random vectors whose probability distributions are only partially known. Possibility theory is used to model the imprecise probabilities. In one of the interpretations, a possibility distribution (a membership function of a fuzzy set) in the set of coefficient realizations induces a necessity measure, which in turn defines a family of probability distributions in this set. The distributionally robust approach is then used to transform the imprecise constraints into deterministic counterparts. Namely, the uncertain left-had side of each constraint is replaced with the expected value with respect to the worst probability distribution that can occur. It is shown how to represent the resulting problem by using linear or second order cone constraints. This leads to problems which are computationally tractable for a wide class of optimization models, in particular for linear programming.

We present a method for learning latent stochastic differential equations (SDEs) from high-dimensional time series data. Given a high-dimensional time series generated from a lower dimensional latent unknown It\^o process, the proposed method learns the mapping from ambient to latent space, and the underlying SDE coefficients, through a self-supervised learning approach. Using the framework of variational autoencoders, we consider a conditional generative model for the data based on the Euler-Maruyama approximation of SDE solutions. Furthermore, we use recent results on identifiability of latent variable models to show that the proposed model can recover not only the underlying SDE coefficients, but also the original latent variables, up to an isometry, in the limit of infinite data. We validate the method through several simulated video processing tasks, where the underlying SDE is known, and through real world datasets.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

Proximal Policy Optimization (PPO) is a highly popular model-free reinforcement learning (RL) approach. However, in continuous state and actions spaces and a Gaussian policy -- common in computer animation and robotics -- PPO is prone to getting stuck in local optima. In this paper, we observe a tendency of PPO to prematurely shrink the exploration variance, which naturally leads to slow progress. Motivated by this, we borrow ideas from CMA-ES, a black-box optimization method designed for intelligent adaptive Gaussian exploration, to derive PPO-CMA, a novel proximal policy optimization approach that can expand the exploration variance on objective function slopes and shrink the variance when close to the optimum. This is implemented by using separate neural networks for policy mean and variance and training the mean and variance in separate passes. Our experiments demonstrate a clear improvement over vanilla PPO in many difficult OpenAI Gym MuJoCo tasks.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.

北京阿比特科技有限公司