亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificial neural networks (ANNs) have shown to be amongst the most important artificial intelligence (AI) techniques in educational applications, providing adaptive educational services. However, their educational potential is limited in practice due to three major challenges: i) difficulty in incorporating symbolic educational knowledge (e.g., causal relationships, and practitioners' knowledge) in their development, ii) learning and reflecting biases, and iii) lack of interpretability. Given the high-risk nature of education, the integration of educational knowledge into ANNs becomes crucial for developing AI applications that adhere to essential educational restrictions, and provide interpretability over the predictions. This research argues that the neural-symbolic family of AI has the potential to address the named challenges. To this end, it adapts a neural-symbolic AI framework and accordingly develops an approach called NSAI, that injects and extracts educational knowledge into and from deep neural networks, for modelling learners computational thinking. Our findings reveal that the NSAI approach has better generalizability compared to deep neural networks trained merely on training data, as well as training data augmented by SMOTE and autoencoder methods. More importantly, unlike the other models, the NSAI approach prioritises robust representations that capture causal relationships between input features and output labels, ensuring safety in learning to avoid spurious correlations and control biases in training data. Furthermore, the NSAI approach enables the extraction of rules from the learned network, facilitating interpretation and reasoning about the path to predictions, as well as refining the initial educational knowledge. These findings imply that neural-symbolic AI can overcome the limitations of ANNs in education, enabling trustworthy and interpretable applications.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

A primary challenge of physics-informed machine learning (PIML) is its generalization beyond the training domain, especially when dealing with complex physical problems represented by partial differential equations (PDEs). This paper aims to enhance the generalization capabilities of PIML, facilitating practical, real-world applications where accurate predictions in unexplored regions are crucial. We leverage the inherent causality and temporal sequential characteristics of PDE solutions to fuse PIML models with recurrent neural architectures based on systems of ordinary differential equations, referred to as neural oscillators. Through effectively capturing long-time dependencies and mitigating the exploding and vanishing gradient problem, neural oscillators foster improved generalization in PIML tasks. Extensive experimentation involving time-dependent nonlinear PDEs and biharmonic beam equations demonstrates the efficacy of the proposed approach. Incorporating neural oscillators outperforms existing state-of-the-art methods on benchmark problems across various metrics. Consequently, the proposed method improves the generalization capabilities of PIML, providing accurate solutions for extrapolation and prediction beyond the training data.

Substantial efforts have been made in developing various Decision Modeling formalisms, both from industry and academia. A challenging problem is that of expressing decision knowledge in the context of incomplete knowledge. In such contexts, decisions depend on what is known or not known. We argue that none of the existing formalisms for modeling decisions are capable of correctly capturing the epistemic nature of such decisions, inevitably causing issues in situations of uncertainty. This paper presents a new language for modeling decisions with incomplete knowledge. It combines three principles: stratification, autoepistemic logic, and definitions. A knowledge base in this language is a hierarchy of epistemic theories, where each component theory may epistemically reason on the knowledge in lower theories, and decisions are made using definitions with epistemic conditions.

Generative language models, such as ChatGPT, have garnered attention for their ability to generate human-like writing in various fields, including academic research. The rapid proliferation of generated texts has bolstered the need for automatic identification to uphold transparency and trust in the information. However, these generated texts closely resemble human writing and often have subtle differences in the grammatical structure, tones, and patterns, which makes systematic scrutinization challenging. In this work, we attempt to detect the Abstracts generated by ChatGPT, which are much shorter in length and bounded. We extract the texts semantic and lexical properties and observe that traditional machine learning models can confidently detect these Abstracts.

We show that existing unsupervised methods on large language model (LLM) activations do not discover knowledge -- instead they seem to discover whatever feature of the activations is most prominent. The idea behind unsupervised knowledge elicitation is that knowledge satisfies a consistency structure, which can be used to discover knowledge. We first prove theoretically that arbitrary features (not just knowledge) satisfy the consistency structure of a particular leading unsupervised knowledge-elicitation method, contrast-consistent search (Burns et al. - arXiv:2212.03827). We then present a series of experiments showing settings in which unsupervised methods result in classifiers that do not predict knowledge, but instead predict a different prominent feature. We conclude that existing unsupervised methods for discovering latent knowledge are insufficient, and we contribute sanity checks to apply to evaluating future knowledge elicitation methods. Conceptually, we hypothesise that the identification issues explored here, e.g. distinguishing a model's knowledge from that of a simulated character's, will persist for future unsupervised methods.

In this article, we create an artificial neural network (ANN) that combines both classical and modern techniques for determining the key length of a Vigen\`{e}re cipher. We provide experimental evidence supporting the accuracy of our model for a wide range of parameters. We also discuss the creation and features of this ANN along with a comparative analysis between our ANN, the index of coincidence, and the twist-based algorithms.

This work compares three locomotion techniques for an immersive VR environment: two different types of teleporting (with and without animation) and a manual (joystick-based) technique. We tested the effect of these techniques on visual motion sickness, spatial awareness, presence, subjective pleasantness, and perceived difficulty of operating the navigation. We collected eye tracking and head and body orientation data to investigate the relationships between motion, vection, and sickness. Our study confirms some results already discussed in the literature regarding the reduced invasiveness and the high usability of instant teleport while increasing the evidence against the hypothesis of reduced spatial awareness induced by this technique. We reinforce the evidence about the issues of extending teleporting with animation. Furthermore, we offer some new evidence of a benefit to the user experience of the manual technique and the correlation of the sickness felt in this condition with head movements. The findings of this study contribute to the ongoing debate on the development of guidelines on navigation interfaces in specific VR environments.

Artificial intelligence (AI) is gradually changing the planet. Data digitisation, computing infrastructure and machine learning are helping AI tools to spread across all sectors of society. This article presents the results of a bibliometric analysis of AI-related publications in the social sciences over the last ten years (2013-2022). Most of the historical publications are taken into consideration with the aim of identifying research relevance and trends in this field. The results indicate that more than 19,408 articles have been published, 85% from 2008 to 2022, showing that research in this field is increasing significantly year on year. Clear domains or disciplines of research related to AI within the social sciences can be grouped into sub-areas such as law and legal reasoning, education, economics, and ethics. The United States is the country that publishes the most (20%), followed by China (13%). The influence of AI on society is inevitable and the advances can generate great opportunities for innovation and new jobs, but in the medium term it is necessary to adequately face this transition, setting regulations and reviewing the challenges of ethics and responsibility.

Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司