Reconfigurable Intelligent Surfaces (RIS) technology are a promising physical-layer candidate for sixth-generation (6G) cellular networks. This paper provides a system-level performance assessment of RIS-assisted multi-input multi-output (MIMO) cellular networks in terms of downlink coverage probability and ergodic rate. To capture the inherent randomness in the spatial deployments of both Base Stations (BSs) and RISs, we propose a new stochastic geometry model for such systems based on the Matern Cluster Process (MCP). This model consists in randomly distributed RISs around BSs, whose placement is according to a Poisson Point Process (PPP). The RISs provide the multipath diversity and the multiple antenna receiver provide the antenna diversity. The system is assumed to use the orthogonal frequency division multiplexing (OFDM) technique to modulate the former and employ the maximal ratio combining (MRC) technique at the receiver to exploit the latter. We show that the coverage probability and the ergodic rate can be evaluated when considering RISs operate as batched powerless beamformers. The resulting analytical expressions provide a generic methodology to evaluate the impact of key RIS-related parameters, such as the size of RIS and the density of nodes, on system level performance. Numerical evaluations of the analytical expressions and Monte-Carlo simulations jointly validate the proposed analytical approach and provide valuable insights into the design of future RIS-assisted radio cellular networks.
Quantum Relative Entropy (QRE) programming is a recently popular and challenging class of convex optimization problems with significant applications in quantum computing and quantum information theory. We are interested in modern interior point (IP) methods based on optimal self-concordant barriers for the QRE cone. A range of theoretical and numerical challenges associated with such barrier functions and the QRE cones have hindered the scalability of IP methods. To address these challenges, we propose a series of numerical and linear algebraic techniques and heuristics aimed at enhancing the efficiency of gradient and Hessian computations for the self-concordant barrier function, solving linear systems, and performing matrix-vector products. We also introduce and deliberate about some interesting concepts related to QRE such as symmetric quantum relative entropy (SQRE). We also introduce a two-phase method for performing facial reduction that can significantly improve the performance of QRE programming. Our new techniques have been implemented in the latest version (DDS 2.2) of the software package DDS. In addition to handling QRE constraints, DDS accepts any combination of several other conic and non-conic convex constraints. Our comprehensive numerical experiments encompass several parts including 1) a comparison of DDS 2.2 with Hypatia for the nearest correlation matrix problem, 2) using DDS for combining QRE constraints with various other constraint types, and 3) calculating the key rate for quantum key distribution (QKD) channels and presenting results for several QKD protocols.
Morphing quadrotors with four external actuators can adapt to different restricted scenarios by changing their geometric structure. However, previous works mainly focus on the improvements in structures and controllers, and existing planning algorithms don't consider the morphological modifications, which leads to safety and dynamic feasibility issues. In this paper, we propose a unified planning and control framework for morphing quadrotors to deform autonomously and efficiently. The framework consists of a milliseconds-level spatial-temporal trajectory optimizer that takes into account the morphological modifications of quadrotors. The optimizer can generate full-body safety trajectories including position and attitude. Additionally, it incorporates a nonlinear attitude controller that accounts for aerodynamic drag and dynamically adjusts dynamic parameters such as the inertia tensor and Center of Gravity. The controller can also online compute the thrust coefficient during morphing. Benchmark experiments compared with existing methods validate the robustness of the proposed controller. Extensive simulations and real-world experiments are performed to demonstrate the effectiveness of the proposed framework.
The expanding application of Artificial Intelligence (AI) in scientific fields presents unprecedented opportunities for discovery and innovation. However, this growth is not without risks. AI models in science, if misused, can amplify risks like creation of harmful substances, or circumvention of established regulations. In this study, we aim to raise awareness of the dangers of AI misuse in science, and call for responsible AI development and use in this domain. We first itemize the risks posed by AI in scientific contexts, then demonstrate the risks by highlighting real-world examples of misuse in chemical science. These instances underscore the need for effective risk management strategies. In response, we propose a system called SciGuard to control misuse risks for AI models in science. We also propose a red-teaming benchmark SciMT-Safety to assess the safety of different systems. Our proposed SciGuard shows the least harmful impact in the assessment without compromising performance in benign tests. Finally, we highlight the need for a multidisciplinary and collaborative effort to ensure the safe and ethical use of AI models in science. We hope that our study can spark productive discussions on using AI ethically in science among researchers, practitioners, policymakers, and the public, to maximize benefits and minimize the risks of misuse.
This article explores natural interaction modalities for human-cyber-physical systems (CPS) interaction in construction. CPS has been applied in construction for many purposes with the promise of improving the safety and productivity of construction operations. However, there is little research on human-CPS interaction in construction. This study proposes two methodologies for human-CPS interactions for construction progress monitoring - a) hand gesture interaction using transfer learning, and b) voice command interaction using natural language processing. User studies with thirty-two users validated the generalizability of the proposed methodologies. The proposed hand gesture recognition method achieved higher accuracy (99.69% vs 87.72%) and speed (36.05ms vs 578.91ms) than the proposed voice command recognition method, though users performed the progress monitoring task more correctly with voice commands than hand gestures (88% vs 66.1%). The main contribution of the study is the development of an ML pipeline and computational framework to recognize hand gestures and voice commands without the need for a large training dataset for human-CPS interaction.
This paper introduces a new numerical approach that integrates local randomized neural networks (LRNNs) and the hybridized discontinuous Petrov-Galerkin (HDPG) method for solving coupled fluid flow problems. The proposed method partitions the domain of interest into several subdomains and constructs an LRNN on each subdomain. Then, the HDPG scheme is used to couple the LRNNs to approximate the unknown functions. We develop LRNN-HDPG methods based on velocity-stress formulation to solve two types of problems: Stokes-Darcy problems and Brinkman equations, which model the flow in porous media and free flow. We devise a simple and effective way to deal with the interface conditions in the Stokes-Darcy problems without adding extra terms to the numerical scheme. We conduct extensive numerical experiments to demonstrate the stability, efficiency, and robustness of the proposed method. The numerical results show that the LRNN-HDPG method can achieve high accuracy with a small number of degrees of freedom.
Brain-to-speech technology represents a fusion of interdisciplinary applications encompassing fields of artificial intelligence, brain-computer interfaces, and speech synthesis. Neural representation learning based intention decoding and speech synthesis directly connects the neural activity to the means of human linguistic communication, which may greatly enhance the naturalness of communication. With the current discoveries on representation learning and the development of the speech synthesis technologies, direct translation of brain signals into speech has shown great promise. Especially, the processed input features and neural speech embeddings which are given to the neural network play a significant role in the overall performance when using deep generative models for speech generation from brain signals. In this paper, we introduce the current brain-to-speech technology with the possibility of speech synthesis from brain signals, which may ultimately facilitate innovation in non-verbal communication. Also, we perform comprehensive analysis on the neural features and neural speech embeddings underlying the neurophysiological activation while performing speech, which may play a significant role in the speech synthesis works.
Building artificial intelligence (AI) systems on top of a set of foundation models (FMs) is becoming a new paradigm in AI research. Their representative and generative abilities learnt from vast amounts of data can be easily adapted and transferred to a wide range of downstream tasks without extra training from scratch. However, leveraging FMs in cross-modal generation remains under-researched when audio modality is involved. On the other hand, automatically generating semantically-relevant sound from visual input is an important problem in cross-modal generation studies. To solve this vision-to-audio (V2A) generation problem, existing methods tend to design and build complex systems from scratch using modestly sized datasets. In this paper, we propose a lightweight solution to this problem by leveraging foundation models, specifically CLIP, CLAP, and AudioLDM. We first investigate the domain gap between the latent space of the visual CLIP and the auditory CLAP models. Then we propose a simple yet effective mapper mechanism (V2A-Mapper) to bridge the domain gap by translating the visual input between CLIP and CLAP spaces. Conditioned on the translated CLAP embedding, pretrained audio generative FM AudioLDM is adopted to produce high-fidelity and visually-aligned sound. Compared to previous approaches, our method only requires a quick training of the V2A-Mapper. We further analyze and conduct extensive experiments on the choice of the V2A-Mapper and show that a generative mapper is better at fidelity and variability (FD) while a regression mapper is slightly better at relevance (CS). Both objective and subjective evaluation on two V2A datasets demonstrate the superiority of our proposed method compared to current state-of-the-art approaches - trained with 86% fewer parameters but achieving 53% and 19% improvement in FD and CS, respectively.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.