It has been hypothesized that quantum computers may lend themselves well to applications in machine learning. In the present work, we analyze function classes defined via quantum kernels. Quantum computers offer the possibility to efficiently compute inner products of exponentially large density operators that are classically hard to compute. However, having an exponentially large feature space renders the problem of generalization hard. Furthermore, being able to evaluate inner products in high dimensional spaces efficiently by itself does not guarantee a quantum advantage, as already classically tractable kernels can correspond to high- or infinite-dimensional reproducing kernel Hilbert spaces (RKHS). We analyze the spectral properties of quantum kernels and find that we can expect an advantage if their RKHS is low dimensional and contains functions that are hard to compute classically. If the target function is known to lie in this class, this implies a quantum advantage, as the quantum computer can encode this inductive bias, whereas there is no classically efficient way to constrain the function class in the same way. However, we show that finding suitable quantum kernels is not easy because the kernel evaluation might require exponentially many measurements. In conclusion, our message is a somewhat sobering one: we conjecture that quantum machine learning models can offer speed-ups only if we manage to encode knowledge about the problem at hand into quantum circuits, while encoding the same bias into a classical model would be hard. These situations may plausibly occur when learning on data generated by a quantum process, however, they appear to be harder to come by for classical datasets.
We provide a deepened study of autocorrelations in Neural Markov Chain Monte Carlo simulations, a version of the traditional Metropolis algorithm which employs neural networks to provide independent proposals. We illustrate our ideas using the two-dimensional Ising model. We propose several estimates of autocorrelation times, some inspired by analytical results derived for the Metropolized Independent Sampler, which we compare and study as a function of inverse temperature $\beta$. Based on that we propose an alternative loss function and study its impact on the autocorelation times. Furthermore, we investigate the impact of imposing system symmetries ($Z_2$ and/or translational) in the neural network training process on the autocorrelation times. Eventually, we propose a scheme which incorporates partial heat-bath updates. The impact of the above enhancements is discussed for a $16 \times 16$ spin system. The summary of our findings may serve as a guide to the implementation of Neural Markov Chain Monte Carlo simulations of more complicated models.
Central to the success of adaptive systems is their ability to interpret signals from their environment and respond accordingly -- they act as agents interacting with their surroundings. Such agents typically perform better when able to execute increasingly complex strategies. This comes with a cost: the more information the agent must recall from its past experiences, the more memory it will need. Here we investigate the power of agents capable of quantum information processing. We uncover the most general form a quantum agent need adopt to maximise memory compression advantages, and provide a systematic means of encoding their memory states. We show these encodings can exhibit extremely favourable scaling advantages relative to memory-minimal classical agents, particularly when information must be retained about events increasingly far into the past.
Quantum computing is the process of performing calculations using quantum mechanics. This field studies the quantum behavior of certain subatomic particles for subsequent use in performing calculations, as well as for large-scale information processing. These capabilities can give quantum computers an advantage in terms of computational time and cost over classical computers. Nowadays, there are scientific challenges that are impossible to perform by classical computation due to computational complexity or the time the calculation would take, and quantum computation is one of the possible answers. However, current quantum devices have not yet the necessary qubits and are not fault-tolerant enough to achieve these goals. Nonetheless, there are other fields like machine learning or chemistry where quantum computation could be useful with current quantum devices. This manuscript aims to present a Systematic Literature Review of the papers published between 2017 and 2021 to identify, analyze and classify the different algorithms used in quantum machine learning and their applications. Consequently, this study identified 52 articles that used quantum machine learning techniques and algorithms. The main types of found algorithms are quantum implementations of classical machine learning algorithms, such as support vector machines or the k-nearest neighbor model, and classical deep learning algorithms, like quantum neural networks. Many articles try to solve problems currently answered by classical machine learning but using quantum devices and algorithms. Even though results are promising, quantum machine learning is far from achieving its full potential. An improvement in the quantum hardware is required since the existing quantum computers lack enough quality, speed, and scale to allow quantum computing to achieve its full potential.
The field of artificial neural networks is expected to strongly benefit from recent developments of quantum computers. In particular, quantum machine learning, a class of quantum algorithms which exploit qubits for creating trainable neural networks, will provide more power to solve problems such as pattern recognition, clustering and machine learning in general. The building block of feed-forward neural networks consists of one layer of neurons connected to an output neuron that is activated according to an arbitrary activation function. The corresponding learning algorithm goes under the name of Rosenblatt perceptron. Quantum perceptrons with specific activation functions are known, but a general method to realize arbitrary activation functions on a quantum computer is still lacking. Here we fill this gap with a quantum algorithm which is capable to approximate any analytic activation functions to any given order of its power series. Unlike previous proposals providing irreversible measurement--based and simplified activation functions, here we show how to approximate any analytic function to any required accuracy without the need to measure the states encoding the information. Thanks to the generality of this construction, any feed-forward neural network may acquire the universal approximation properties according to Hornik's theorem. Our results recast the science of artificial neural networks in the architecture of gate-model quantum computers.
We give a quantum speedup for solving the canonical semidefinite programming relaxation for binary quadratic optimization. This class of relaxations for combinatorial optimization has so far eluded quantum speedups. Our methods combine ideas from quantum Gibbs sampling and matrix exponent updates. A de-quantization of the algorithm also leads to a faster classical solver. For generic instances, our quantum solver gives a nearly quadratic speedup over state-of-the-art algorithms. Such instances include approximating the ground state of spin glasses and MaxCut on Erd\"{o}s-R\'enyi graphs. We also provide an efficient randomized rounding procedure that converts approximately optimal SDP solutions into approximations of the original quadratic optimization problem.
Recent work has proposed stochastic Plackett-Luce (PL) ranking models as a robust choice for optimizing relevance and fairness metrics. Unlike their deterministic counterparts that require heuristic optimization algorithms, PL models are fully differentiable. Theoretically, they can be used to optimize ranking metrics via stochastic gradient descent. However, in practice, the computation of the gradient is infeasible because it requires one to iterate over all possible permutations of items. Consequently, actual applications rely on approximating the gradient via sampling techniques. In this paper, we introduce a novel algorithm: PL-Rank, that estimates the gradient of a PL ranking model w.r.t. both relevance and fairness metrics. Unlike existing approaches that are based on policy gradients, PL-Rank makes use of the specific structure of PL models and ranking metrics. Our experimental analysis shows that PL-Rank has a greater sample-efficiency and is computationally less costly than existing policy gradients, resulting in faster convergence at higher performance. PL-Rank further enables the industry to apply PL models for more relevant and fairer real-world ranking systems.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Deep reinforcement learning (RL) algorithms have shown an impressive ability to learn complex control policies in high-dimensional environments. However, despite the ever-increasing performance on popular benchmarks such as the Arcade Learning Environment (ALE), policies learned by deep RL algorithms often struggle to generalize when evaluated in remarkably similar environments. In this paper, we assess the generalization capabilities of DQN, one of the most traditional deep RL algorithms in the field. We provide evidence suggesting that DQN overspecializes to the training environment. We comprehensively evaluate the impact of traditional regularization methods, $\ell_2$-regularization and dropout, and of reusing the learned representations to improve the generalization capabilities of DQN. We perform this study using different game modes of Atari 2600 games, a recently introduced modification for the ALE which supports slight variations of the Atari 2600 games traditionally used for benchmarking. Despite regularization being largely underutilized in deep RL, we show that it can, in fact, help DQN learn more general features. These features can then be reused and fine-tuned on similar tasks, considerably improving the sample efficiency of DQN.
Asynchronous distributed machine learning solutions have proven very effective so far, but always assuming perfectly functioning workers. In practice, some of the workers can however exhibit Byzantine behavior, caused by hardware failures, software bugs, corrupt data, or even malicious attacks. We introduce \emph{Kardam}, the first distributed asynchronous stochastic gradient descent (SGD) algorithm that copes with Byzantine workers. Kardam consists of two complementary components: a filtering and a dampening component. The first is scalar-based and ensures resilience against $\frac{1}{3}$ Byzantine workers. Essentially, this filter leverages the Lipschitzness of cost functions and acts as a self-stabilizer against Byzantine workers that would attempt to corrupt the progress of SGD. The dampening component bounds the convergence rate by adjusting to stale information through a generic gradient weighting scheme. We prove that Kardam guarantees almost sure convergence in the presence of asynchrony and Byzantine behavior, and we derive its convergence rate. We evaluate Kardam on the CIFAR-100 and EMNIST datasets and measure its overhead with respect to non Byzantine-resilient solutions. We empirically show that Kardam does not introduce additional noise to the learning procedure but does induce a slowdown (the cost of Byzantine resilience) that we both theoretically and empirically show to be less than $f/n$, where $f$ is the number of Byzantine failures tolerated and $n$ the total number of workers. Interestingly, we also empirically observe that the dampening component is interesting in its own right for it enables to build an SGD algorithm that outperforms alternative staleness-aware asynchronous competitors in environments with honest workers.
Quantum machine learning is expected to be one of the first potential general-purpose applications of near-term quantum devices. A major recent breakthrough in classical machine learning is the notion of generative adversarial training, where the gradients of a discriminator model are used to train a separate generative model. In this work and a companion paper, we extend adversarial training to the quantum domain and show how to construct generative adversarial networks using quantum circuits. Furthermore, we also show how to compute gradients -- a key element in generative adversarial network training -- using another quantum circuit. We give an example of a simple practical circuit ansatz to parametrize quantum machine learning models and perform a simple numerical experiment to demonstrate that quantum generative adversarial networks can be trained successfully.