亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Database de-anonymization typically involves matching an anonymized database with correlated publicly available data. Existing research focuses either on practical aspects without requiring knowledge of the data distribution yet provides limited guarantees, or on theoretical aspects assuming known distributions. This paper aims to bridge these two approaches, offering theoretical guarantees for database de-anonymization under synchronization errors and obfuscation without prior knowledge of data distribution. Using a modified replica detection algorithm and a new seeded deletion detection algorithm, we establish sufficient conditions on the database growth rate for successful matching, demonstrating a double-logarithmic seed size relative to row size is sufficient for detecting deletions in the database. Importantly, our findings indicate that these sufficient de-anonymization conditions are tight and are the same as in the distribution-aware setting, avoiding asymptotic performance loss due to unknown distributions. Finally, we evaluate the performance of our proposed algorithms through simulations, confirming their effectiveness in more practical, non-asymptotic, scenarios.

相關內容

Key-value (KV) caching plays an essential role in accelerating decoding for transformer-based autoregressive large language models (LLMs). However, the amount of memory required to store the KV cache can become prohibitive at long sequence lengths and large batch sizes. Since the invention of the transformer, two of the most effective interventions discovered for reducing the size of the KV cache have been Multi-Query Attention (MQA) and its generalization, Grouped-Query Attention (GQA). MQA and GQA both modify the design of the attention block so that multiple query heads can share a single key/value head, reducing the number of distinct key/value heads by a large factor while only minimally degrading accuracy. In this paper, we show that it is possible to take Multi-Query Attention a step further by also sharing key and value heads between adjacent layers, yielding a new attention design we call Cross-Layer Attention (CLA). With CLA, we find that it is possible to reduce the size of the KV cache by another 2x while maintaining nearly the same accuracy as unmodified MQA. In experiments training 1B- and 3B-parameter models from scratch, we demonstrate that CLA provides a Pareto improvement over the memory/accuracy tradeoffs which are possible with traditional MQA, enabling inference with longer sequence lengths and larger batch sizes than would otherwise be possible

Current methods for few-shot action recognition mainly fall into the metric learning framework following ProtoNet, which demonstrates the importance of prototypes. Although they achieve relatively good performance, the effect of multimodal information is ignored, e.g. label texts. In this work, we propose a novel MultimOdal PRototype-ENhanced Network (MORN), which uses the semantic information of label texts as multimodal information to enhance prototypes. A CLIP visual encoder and a frozen CLIP text encoder are introduced to obtain features with good multimodal initialization. Then in the visual flow, visual prototypes are computed by a visual prototype-computed module. In the text flow, a semantic-enhanced (SE) module and an inflating operation are used to obtain text prototypes. The final multimodal prototypes are then computed by a multimodal prototype-enhanced (MPE) module. Besides, we define a PRototype SImilarity DiffErence (PRIDE) to evaluate the quality of prototypes, which is used to verify our improvement on the prototype level and effectiveness of MORN. We conduct extensive experiments on four popular few-shot action recognition datasets: HMDB51, UCF101, Kinetics and SSv2, and MORN achieves state-of-the-art results. When plugging PRIDE into the training stage, the performance can be further improved.

We explore how interaction with large language models (LLMs) can give rise to emergent behaviors, empowering players to participate in the evolution of game narratives. Our testbed is a text-adventure game in which players attempt to solve a mystery under a fixed narrative premise, but can freely interact with non-player characters generated by GPT-4, a large language model. We recruit 28 gamers to play the game and use GPT-4 to automatically convert the game logs into a node-graph representing the narrative in the player's gameplay. We find that through their interactions with the non-deterministic behavior of the LLM, players are able to discover interesting new emergent nodes that were not a part of the original narrative but have potential for being fun and engaging. Players that created the most emergent nodes tended to be those that often enjoy games that facilitate discovery, exploration and experimentation.

Self-supervised pretraining (SSP) has been recognized as a method to enhance prediction accuracy in various downstream tasks. However, its efficacy for DNA sequences remains somewhat constrained. This limitation stems primarily from the fact that most existing SSP approaches in genomics focus on masked language modeling of individual sequences, neglecting the crucial aspect of encoding statistics across multiple sequences. To overcome this challenge, we introduce an innovative deep neural network model, which incorporates collaborative learning between a `student' and a `teacher' subnetwork. In this model, the student subnetwork employs masked learning on nucleotides and progressively adapts its parameters to the teacher subnetwork through an exponential moving average approach. Concurrently, both subnetworks engage in contrastive learning, deriving insights from two augmented representations of the input sequences. This self-distillation process enables our model to effectively assimilate both contextual information from individual sequences and distributional data across the sequence population. We validated our approach with preliminary pretraining using the human reference genome, followed by applying it to 20 downstream inference tasks. The empirical results from these experiments demonstrate that our novel method significantly boosts inference performance across the majority of these tasks. Our code is available at //github.com/wiedersehne/FinDNA.

We model a Markov decision process, parametrized by an unknown parameter, and study the asymptotic behavior of a sampling-based algorithm, called Thompson sampling. The standard definition of regret is not always suitable to evaluate a policy, especially when the underlying chain structure is general. We show that the standard (expected) regret can grow (super-)linearly and fails to capture the notion of learning in realistic settings with non-trivial state evolution. By decomposing the standard (expected) regret, we develop a new metric, called the expected residual regret, which forgets the immutable consequences of past actions. Instead, it measures regret against the optimal reward moving forward from the current period. We show that the expected residual regret of the Thompson sampling algorithm is upper bounded by a term which converges exponentially fast to 0. We present conditions under which the posterior sampling error of Thompson sampling converges to 0 almost surely. We then introduce the probabilistic version of the expected residual regret and present conditions under which it converges to 0 almost surely. Thus, we provide a viable concept of learning for sampling algorithms which will serve useful in broader settings than had been considered previously.

Generative Adversarial Networks (GANs) should produce synthetic data that fits the underlying distribution of the data being modeled. For real valued time-series data, this implies the need to simultaneously capture the static distribution of the data, but also the full temporal distribution of the data for any potential time horizon. This temporal element produces a more complex problem that can potentially leave current solutions under-constrained, unstable during training, or prone to varying degrees of mode collapse. In FETSGAN, entire sequences are translated directly to the generator's sampling space using a seq2seq style adversarial auto encoder (AAE), where adversarial training is used to match the training distribution in both the feature space and the lower dimensional sampling space. This additional constraint provides a loose assurance that the temporal distribution of the synthetic samples will not collapse. In addition, the First Above Threshold (FAT) operator is introduced to supplement the reconstruction of encoded sequences, which improves training stability and the overall quality of the synthetic data being generated. These novel contributions demonstrate a significant improvement to the current state of the art for adversarial learners in qualitative measures of temporal similarity and quantitative predictive ability of data generated through FETSGAN.

We use positional-unigram byte models along with maximum likelihood for generalized TLS fingerprinting and empirically show that it is robust to cipher stunting. Our approach creates a set of positional-unigram byte models from client hello messages. Each positional-unigram byte model is a statistical model of TLS client hello traffic created by a client application or process. To fingerprint a TLS connection, we use its client hello, and compute the likelihood as a function of a statistical model. The statistical model that maximizes the likelihood function is the predicted client application for the given client hello. Our data driven approach does not use side-channel information and can be updated on-the-fly. We experimentally validate our method on an internal dataset and show that it is robust to cipher stunting by tracking an unbiased $f_{1}$ score as we synthetically increase randomization.

This study focuses on the analysis of signals containing multiple components with crossover instantaneous frequencies (IF). This problem was initially solved with the chirplet transform (CT). Also, it can be sharpened by adding the synchrosqueezing step, which is called the synchrosqueezed chirplet transform (SCT). However, we found that the SCT goes wrong with the high chirp modulation signal due to the wrong estimation of the IF. In this paper, we present the improvement of the post-transformation of the CT. The main goal of this paper is to amend the estimation introduced in the SCT and carry out the high-order synchrosqueezed chirplet transform. The proposed method reduces the wrong estimation when facing a stronger variety of chirp-modulated multi-component signals. The theoretical analysis of the new reassignment ingredient is provided. Numerical experiments on some synthetic signals are presented to verify the effectiveness of the proposed high-order SCT.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

北京阿比特科技有限公司