亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work presents an adaptive group testing framework for the range-based high dimensional near neighbor search problem. The proposed method detects high-similarity vectors from an extensive collection of high dimensional vectors, where each vector represents an image descriptor. Our method efficiently marks each item in the collection as neighbor or non-neighbor on the basis of a cosine distance threshold without exhaustive search. Like other methods in the domain of large scale retrieval, our approach exploits the assumption that most of the items in the collection are unrelated to the query. Unlike other methods, it does not assume a large difference between the cosine similarity of the query vector with the least related neighbor and that with the least unrelated non-neighbor. Following the procedure of binary splitting, a multi-stage adaptive group testing algorithm, we split the set of items to be searched into half at each step, and perform dot product tests on smaller and smaller subsets, many of which we are able to prune away. We experimentally show that our method achieves a speed-up over exhaustive search by a factor of more than ten with an accuracy same as that of exhaustive search, on a variety of large datasets. We present a theoretical analysis of the expected number of distance computations per query and the probability that a pool with a certain number of members will be pruned. In this way, our method exploits very useful and practical distributional properties unlike other methods. In our method, all required data structures are created purely offline. Moreover, our method does not impose any strong assumptions on the number of true near neighbors, is adaptible to streaming settings where new vectors are dynamically added to the database, and does not require any parameter tuning.

相關內容

We present a neural network for mitigating biased errors in pseudoranges to improve localization performance with data collected from mobile phones. A satellite-wise Multilayer Perceptron (MLP) is designed to regress the pseudorange bias correction from six satellite, receiver, context-related features derived from Android raw Global Navigation Satellite System (GNSS) measurements. To train the MLP, we carefully calculate the target values of pseudorange bias using location ground truth and smoothing techniques and optimize a loss function involving the estimation residuals of smartphone clock bias. The corrected pseudoranges are then used by a model-based localization engine to compute locations. The Google Smartphone Decimeter Challenge (GSDC) dataset, which contains Android smartphone data collected from both rural and urban areas, is utilized for evaluation. Both fingerprinting and cross-trace localization results demonstrate that our proposed method outperforms model-based and state-of-the-art data-driven approaches.

We introduce Dataset Grouper, a library to create large-scale group-structured (e.g., federated) datasets, enabling federated learning simulation at the scale of foundation models. This library facilitates the creation of group-structured versions of existing datasets based on user-specified partitions and directly leads to a variety of useful heterogeneous datasets that can be plugged into existing software frameworks. Dataset Grouper offers three key advantages. First, it scales to settings where even a single group's dataset is too large to fit in memory. Second, it provides flexibility, both in choosing the base (non-partitioned) dataset and in defining partitions. Finally, it is framework-agnostic. We empirically demonstrate that Dataset Grouper enables large-scale federated language modeling simulations on datasets that are orders of magnitude larger than in previous work, allowing for federated training of language models with hundreds of millions, and even billions, of parameters. Our experimental results show that algorithms like FedAvg operate more as meta-learning methods than as empirical risk minimization methods at this scale, suggesting their utility in downstream personalization and task-specific adaptation. Dataset Grouper is available at //github.com/google-research/dataset_grouper.

This work proposes a neural network to extensively exploit spatial information for multichannel joint speech separation, denoising and dereverberation, named SpatialNet. In the short-time Fourier transform (STFT) domain, the proposed network performs end-to-end speech enhancement. It is mainly composed of interleaved narrow-band and cross-band blocks to respectively exploit narrow-band and cross-band spatial information. The narrow-band blocks process frequencies independently, and use self-attention mechanism and temporal convolutional layers to respectively perform spatial-feature-based speaker clustering and temporal smoothing/filtering. The cross-band blocks process frames independently, and use full-band linear layer and frequency convolutional layers to respectively learn the correlation between all frequencies and adjacent frequencies. Experiments are conducted on various simulated and real datasets, and the results show that 1) the proposed network achieves the state-of-the-art performance on almost all tasks; 2) the proposed network suffers little from the spectral generalization problem; and 3) the proposed network is indeed performing speaker clustering (demonstrated by attention maps).

We study a graph-based generalization of the Galam opinion formation model. Consider a simple connected graph which represents a social network. Each node in the graph is colored either blue or white, which indicates a positive or negative opinion on a new product or a topic. In each discrete-time round, all nodes are assigned randomly to groups of different sizes, where the node(s) in each group form a clique in the underlying graph. All the nodes simultaneously update their color to the majority color in their group. If there is a tie, each node in the group chooses one of the two colors uniformly at random. Investigating the convergence time of the model, our experiments show that the convergence time is a logarithm function of the number of nodes for a complete graph and a quadratic function for a cycle graph. We also study the various strategies for selecting a set of seed nodes to maximize the final cascade of one of the two colors, motivated by viral marketing. We consider the algorithms where the seed nodes are selected based on the graph structure (nodes' centrality measures such as degree, betweenness, and closeness) and the individual's characteristics (activeness and stubbornness). We provide a comparison of such strategies by conducting experiments on different real-world and synthetic networks.

This paper presents a detailed case study examining the application of Large Language Models (LLMs) in the construction of test cases within the context of software engineering. LLMs, characterized by their advanced natural language processing capabilities, are increasingly garnering attention as tools to automate and enhance various aspects of the software development life cycle. Leveraging a case study methodology, we systematically explore the integration of LLMs in the test case construction process, aiming to shed light on their practical efficacy, challenges encountered, and implications for software quality assurance. The study encompasses the selection of a representative software application, the formulation of test case construction methodologies employing LLMs, and the subsequent evaluation of outcomes. Through a blend of qualitative and quantitative analyses, this study assesses the impact of LLMs on test case comprehensiveness, accuracy, and efficiency. Additionally, delves into challenges such as model interpretability and adaptation to diverse software contexts. The findings from this case study contributes with nuanced insights into the practical utility of LLMs in the domain of test case construction, elucidating their potential benefits and limitations. By addressing real-world scenarios and complexities, this research aims to inform software practitioners and researchers alike about the tangible implications of incorporating LLMs into the software testing landscape, fostering a more comprehensive understanding of their role in optimizing the software development process.

Super-resolution (SR) techniques have recently been proposed to upscale the outputs of neural radiance fields (NeRF) and generate high-quality images with enhanced inference speeds. However, existing NeRF+SR methods increase training overhead by using extra input features, loss functions, and/or expensive training procedures such as knowledge distillation. In this paper, we aim to leverage SR for efficiency gains without costly training or architectural changes. Specifically, we build a simple NeRF+SR pipeline that directly combines existing modules, and we propose a lightweight augmentation technique, random patch sampling, for training. Compared to existing NeRF+SR methods, our pipeline mitigates the SR computing overhead and can be trained up to 23x faster, making it feasible to run on consumer devices such as the Apple MacBook. Experiments show our pipeline can upscale NeRF outputs by 2-4x while maintaining high quality, increasing inference speeds by up to 18x on an NVIDIA V100 GPU and 12.8x on an M1 Pro chip. We conclude that SR can be a simple but effective technique for improving the efficiency of NeRF models for consumer devices.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司