The diversity-multiplexing tradeoff (DMT) provides a fundamental performance metric for different multiple-input multiple-output (MIMO) schemes in wireless communications. In this paper, we explore the block fading optical wireless communication (OWC) channels and characterize the DMT in the presence of both optical peak- and average-power constraints. Three different fading distributions are considered, which reflect different channel conditions. In each channel condition, we obtain the optimal DMT when the block length is sufficiently large, and we also derive the lower and upper bounds of the DMT curve when the block length is small. These results are dramatically different from the existing DMT results in radio-frequency (RF) channels. These differences may be due to the fact that the optical input signal is real and bounded, while its RF counterpart is usually complex and unbounded.
In applications of remote sensing, estimation, and control, timely communication is not always ensured by high-rate communication. This work proposes distributed age-efficient transmission policies for random access channels with $M$ transmitters. In the first part of this work, we analyze the age performance of stationary randomized policies by relating the problem of finding age to the absorption time of a related Markov chain. In the second part of this work, we propose the notion of \emph{age-gain} of a packet to quantify how much the packet will reduce the instantaneous age of information at the receiver side upon successful delivery. We then utilize this notion to propose a transmission policy in which transmitters act in a distributed manner based on the age-gain of their available packets. In particular, each transmitter sends its latest packet only if its corresponding age-gain is beyond a certain threshold which could be computed adaptively using the collision feedback or found as a fixed value analytically in advance. Both methods improve age of information significantly compared to the state of the art. In the limit of large $M$, we prove that when the arrival rate is small (below $\frac{1}{eM}$), slotted ALOHA-type algorithms are asymptotically optimal. As the arrival rate increases beyond $\frac{1}{eM}$, while age increases under slotted ALOHA, it decreases significantly under the proposed age-based policies. For arrival rates $\theta$, $\theta=\frac{1}{o(M)}$, the proposed algorithms provide a multiplicative factor of at least two compared to the minimum age under slotted ALOHA (minimum over all arrival rates). We conclude that, as opposed to the common practice, it is beneficial to increase the sampling rate (and hence the arrival rate) and transmit packets selectively based on their age-gain.
Location information is often used as a proxy to infer the performance of a wireless communication link. Using a very simple model, this letter unveils a basic statistical relation between the location estimation uncertainty and wireless link reliability. First, a Cram\'er-Rao bound for the localization error is derived. Then, wireless link reliability is characterized by how likely the outage probability is to be above a target threshold. We show that the reliability is sensitive to location errors, especially when the channel statistics are also sensitive to the location. Finally, we highlight the difficulty of choosing a rate that meets target reliability while accounting for the location uncertainty.
Modern wireless channels are increasingly dense and mobile making the channel highly non-stationary. The time-varying distribution and the existence of joint interference across multiple degrees of freedom (e.g., users, antennas, frequency and symbols) in such channels render conventional precoding sub-optimal in practice, and have led to historically poor characterization of their statistics. The core of our work is the derivation of a high-order generalization of Mercer's Theorem to decompose the non-stationary channel into constituent fading sub-channels (2-D eigenfunctions) that are jointly orthogonal across its degrees of freedom. Consequently, transmitting these eigenfunctions with optimally derived coefficients eventually mitigates any interference across these dimensions and forms the foundation of the proposed joint spatio-temporal precoding. The precoded symbols directly reconstruct the data symbols at the receiver upon demodulation, thereby significantly reducing its computational burden, by alleviating the need for any complementary decoding. These eigenfunctions are paramount to extracting the second-order channel statistics, and therefore completely characterize the underlying channel. Theory and simulations show that such precoding leads to ${>}10^4{\times}$ BER improvement (at 20dB) over existing methods for non-stationary channels.
Optical wireless communication (OWC) has the potential to provide high communication speeds that support the massive use of the Internet that is expected in the near future. In OWC, optical access points (APs) are deployed on the celling to serve multiple users. In this context, efficient multiple access schemes are required to share the resources among the users and align multi-user interference. Recently, non-orthogonal multiple access (NOMA) has been studied to serve multiple users simultaneously using the same resources, while a different power level is allocated to each user. Despite the acceptable performance of NOMA, users might experience a high packet loss due to high noise, which results from the use of successive interference cancelation (SIC). In this work, random linear network coding (RLNC) is proposed to enhance the performance of NOMA in an optical wireless network where users are divided into multicast groups, and each group contains users that slightly differ in their channel gains. Moreover, a fixed power allocation (FPA) strategy is considered among these groups to avoid complexity. The performance of the proposed scheme is evaluated in terms of total packet success probability. The results show that the proposed scheme is more suitable for the network considered compared to other benchmark schemes such as traditional NOMA and orthogonal transmission schemes. Moreover, the total packet success probability is highly affected by the level of power allocated to each group in all the scenarios.
We establish the capacity of a class of communication channels introduced in [1]. The $n$-letter input from a finite alphabet is passed through a discrete memoryless channel $P_{Z|X}$ and then the output $n$-letter sequence is uniformly permuted. We show that the maximal communication rate (normalized by $\log n$) equals $1/2 (rank(P_{Z|X})-1)$ whenever $P_{Z|X}$ is strictly positive. This is done by establishing a converse bound matching the achievability of [1]. The two main ingredients of our proof are (1) a sharp bound on the entropy of a uniformly sampled vector from a type class and observed through a DMC; and (2) the covering $\epsilon$-net of a probability simplex with Kullback-Leibler divergence as a metric. In addition to strictly positive DMC we also find the noisy permutation capacity for $q$-ary erasure channels, the Z-channel and others.
This work considers the problem of distributing matrix multiplication over the real or complex numbers to helper servers, such that the information leakage to these servers is close to being information-theoretically secure. These servers are assumed to be honest-but-curious, i.e., they work according to the protocol, but try to deduce information about the data. The problem of secure distributed matrix multiplication (SDMM) has been considered in the context of matrix multiplication over finite fields, which is not always feasible in real world applications. We present two schemes, which allow for variable degree of security based on the use case and allow for colluding and straggling servers. We analyze the security and the numerical accuracy of the schemes and observe a trade-off between accuracy and security.
Accurate and efficient estimation of the high dimensional channels is one of the critical challenges for practical applications of massive multiple-input multiple-output (MIMO). In the context of hybrid analog-digital (HAD) transceivers, channel estimation becomes even more complicated due to information loss caused by limited radio-frequency chains. The conventional compressive sensing (CS) algorithms usually suffer from unsatisfactory performance and high computational complexity. In this paper, we propose a novel deep learning (DL) based framework for uplink channel estimation in HAD massive MIMO systems. To better exploit the sparsity structure of channels in the angular domain, a novel angular space segmentation method is proposed, where the entire angular space is segmented into many small regions and a dedicated neural network is trained offline for each region. During online testing, the most suitable network is selected based on the information from the global positioning system. Inside each neural network, the region-specific measurement matrix and channel estimator are jointly optimized, which not only improves the signal measurement efficiency, but also enhances the channel estimation capability. Simulation results show that the proposed approach significantly outperforms the state-of-the-art CS algorithms in terms of estimation performance and computational complexity.
The idea of Media-based Modulation (MBM) is to embed information in the variations of the transmission media (channel states). Using an RF closure with $w$ RF walls, MBM creates a set of $2^w$ select-able states for the end-to-end channel. Each state represents an index of an MBM constellation point. In each state, the wave (tone) emanating from the transmit antenna experiences many pseudo-random back-and-forth reflections within the RF closure. The RF signal, upon finally leaving the RF closure, further propagates in the rich scattering environment to reach the receiver. This results in an independent complex channel gain to each receive antenna. As a result, coordinates of different MBM constellation points (vectors of channel gains formed over received antennas) will be independent of each other. This is unlike legacy transmission schemes where a fixed constellation structure used at the transmitter will be multiplied by a fixed, but random, channel gain. Due to this independence property, MBM offers several advantages vs. legacy systems, including "additivity of information over multiple receive antennas (regardless of the number of transmit antennas)", and "inherent diversity over a static fading channel". This work studies the Diversity-Multiplexing Trade-off of an MBM constellation. Analytical expressions are provided that demonstrate the advantages of MBM vs. legacy systems. In particular, it is shown that a $1\times N_r$ SIMO-MBM constellation equipped with an MDS code (even with a relatively small code length) significantly outperforms an $N_r\times N_r$ legacy MIMO.
With the increasing number of wireless communication systems and the demand for bandwidth, the wireless medium has become a congested and contested environment. Operating under such an environment brings several challenges, especially for military communication systems, which need to guarantee reliable communication while avoiding interfering with other friendly or neutral systems and denying the enemy systems of service. In this work, we investigate a novel application of Rate-Splitting Multiple Access(RSMA) for joint communications and jamming with a Multi-Carrier(MC) waveform in a multiantenna Cognitive Radio(CR) system. RSMA is a robust multiple access scheme for downlink multi-antenna wireless networks. RSMA relies on multi-antenna Rate-Splitting (RS) at the transmitter and Successive Interference Cancellation (SIC) at the receivers. Our aim is to simultaneously communicate with Secondary Users(SUs) and jam Adversarial Users(AUs) to disrupt their communications while limiting the interference to Primary Users(PUs) in a setting where all users perform broadband communications by MC waveforms in their respective networks. We consider the practical setting of imperfect CSI at transmitter(CSIT) for the SUs and PUs, and statistical CSIT for AUs. We formulate a problem to obtain optimal precoders which maximize the mutual information under interference and jamming power constraints. We propose an Alternating Optimization-Alternating Direction Method of Multipliers(AOADMM) based algorithm for solving the resulting non-convex problem. We perform an analysis based on Karush-Kuhn-Tucker conditions to determine the optimal jamming and interference power thresholds that guarantee the feasibility of problem and propose a practical algorithm to calculate the interference power threshold. By simulations, we show that RSMA achieves a higher sum-rate than Space Division Multiple Access(SDMA).
When deploying resource-intensive signal processing applications in wireless sensor or mesh networks, distributing processing blocks over multiple nodes becomes promising. Such distributed applications need to solve the placement problem (which block to run on which node), the routing problem (which link between blocks to map on which path between nodes), and the scheduling problem (which transmission is active when). We investigate a variant where the application graph may contain feedback loops and we exploit wireless networks? inherent multicast advantage. Thus, we propose Multicast-Aware Routing for Virtual network Embedding with Loops in Overlays (MARVELO) to find efficient solutions for scheduling and routing under a detailed interference model. We cast this as a mixed integer quadratically constrained optimisation problem and provide an efficient heuristic. Simulations show that our approach handles complex scenarios quickly.