This short note shows the superconvergence of an $H(\mathrm{grad}\,\mathrm{curl})$-nonconforming brick element very recently introduced in [17] for the quad-curl problem. The supercloseness is based on proper modifications for both the interpolation and the discrete formulation, leading to an $O(h^2)$ superclose order in the discrete $H(\mathrm{grad}\,\mathrm{curl})$ norm. Moreover, we propose a suitable postprocessing method to ensure the global superconvergence. Numerical results verify our theory.
We present the conditional determinantal point process (DPP) approach to obtain new (mostly Fredholm determinantal) expressions for various eigenvalue statistics in random matrix theory. It is well-known that many (especially $\beta=2$) eigenvalue $n$-point correlation functions are given in terms of $n\times n$ determinants, i.e., they are continuous DPPs. We exploit a derived kernel of the conditional DPP which gives the $n$-point correlation function conditioned on the event of some eigenvalues already existing at fixed locations. Using such kernels we obtain new determinantal expressions for the joint densities of the $k$ largest eigenvalues, probability density functions of the $k^\text{th}$ largest eigenvalue, density of the first eigenvalue spacing, and more. Our formulae are highly amenable to numerical computations and we provide various numerical experiments. Several numerical values that required hours of computing time could now be computed in seconds with our expressions, which proves the effectiveness of our approach. We also demonstrate that our technique can be applied to an efficient sampling of DR paths of the Aztec diamond domino tiling. Further extending the conditional DPP sampling technique, we sample Airy processes from the extended Airy kernel. Additionally we propose a sampling method for non-Hermitian projection DPPs.
We describe a new dependent-rounding algorithmic framework for bipartite graphs. Given a fractional assignment $y$ of values to edges of graph $G = (U \cup V, E)$, the algorithms return an integral solution $Y$ such that each right-node $v \in V$ has at most one neighboring edge $f$ with $Y_f = 1$, and where the variables $Y_e$ also satisfy broad nonpositive-correlation properties. In particular, for any edges $e_1, e_2$ sharing a left-node $u \in U$, the variables $Y_{e_1}, Y_{e_2}$ have strong negative-correlation properties, i.e. the expectation of $Y_{e_1} Y_{e_2}$ is significantly below $y_{e_1} y_{e_2}$. This algorithm is based on generating negatively-correlated Exponential random variables and using them in a contention-resolution scheme inspired by an algorithm Im & Shadloo (2020). Our algorithm gives stronger and much more flexible negative correlation properties. Dependent rounding schemes with negative correlation properties have been used for approximation algorithms for job-scheduling on unrelated machines to minimize weighted completion times (Bansal, Srinivasan, & Svensson (2021), Im & Shadloo (2020), Im & Li (2023)). Using our new dependent-rounding algorithm, among other improvements, we obtain a $1.4$-approximation for this problem. This significantly improves over the prior $1.45$-approximation ratio of Im & Li (2023).
We consider the problem of finding edge-disjoint paths between given pairs of vertices in a sufficiently strong $d$-regular expander graph $G$ with $n$ vertices. In particular, we describe a deterministic, polynomial time algorithm which maintains an initially empty collection of edge-disjoint paths $\mathcal P$ in $G$ and fulfills any series of two types of requests: 1. Given two vertices $a$ and $b$ such that each appears as an endpoint in $O(d)$ paths in $\mathcal P$ and, additionally, $|\mathcal P| = O(n d / \log n)$, the algorithm finds a path of length at most $\log n$ connecting $a$ and $b$ which is edge-disjoint from all other paths in $\mathcal P$, and adds it to $\mathcal P$. 2. Remove a given path $P \in \mathcal{P}$ from $\mathcal{P}$. Importantly, each request is processed before seeing the next one. The upper bound on the length of found paths and the constraints are the best possible up to a constant factor. This establishes the first online algorithm for finding edge-disjoint paths in expanders which also allows removals, significantly strengthening a long list of previous results on the topic.
Austrin showed that the approximation ratio $\beta\approx 0.94016567$ obtained by the MAX 2-SAT approximation algorithm of Lewin, Livnat and Zwick (LLZ) is optimal modulo the Unique Games Conjecture (UGC) and modulo a Simplicity Conjecture that states that the worst performance of the algorithm is obtained on so called simple configurations. We prove Austrin's conjecture, thereby showing the optimality of the LLZ approximation algorithm, relying only on the Unique Games Conjecture. Our proof uses a combination of analytic and computational tools. We also present new approximation algorithms for two restrictions of the MAX 2-SAT problem. For MAX HORN-$\{1,2\}$-SAT, i.e., MAX CSP$(\{x\lor y,\bar{x}\lor y,x,\bar{x}\})$, in which clauses are not allowed to contain two negated literals, we obtain an approximation ratio of $0.94615981$. For MAX CSP$(\{x\lor y,x,\bar{x}\})$, i.e., when 2-clauses are not allowed to contain negated literals, we obtain an approximation ratio of $0.95397990$. By adapting Austrin's and our arguments for the MAX 2-SAT problem we show that these two approximation ratios are also tight, modulo only the UGC conjecture. This completes a full characterization of the approximability of the MAX 2-SAT problem and its restrictions.
Rational function approximations provide a simple but flexible alternative to polynomial approximation, allowing one to capture complex non-linearities without oscillatory artifacts. However, there have been few attempts to use rational functions on noisy data due to the likelihood of creating spurious singularities. To avoid the creation of singularities, we use Bernstein polynomials and appropriate conditions on their coefficients to force the denominator to be strictly positive. While this reduces the range of rational polynomials that can be expressed, it keeps all the benefits of rational functions while maintaining the robustness of polynomial approximation in noisy data scenarios. Our numerical experiments on noisy data show that existing rational approximation methods continually produce spurious poles inside the approximation domain. This contrasts our method, which cannot create poles in the approximation domain and provides better fits than a polynomial approximation and even penalized splines on functions with multiple variables. Moreover, guaranteeing pole-free in an interval is critical for estimating non-constant coefficients when numerically solving differential equations using spectral methods. This provides a compact representation of the original differential equation, allowing numeric solvers to achieve high accuracy quickly, as seen in our experiments.
The $n$-vehicle exploration problem (NVEP) is a combinatorial optimization problem, which tries to find an optimal permutation of a fleet to maximize the length traveled by the last vehicle. NVEP has a fractional form of objective function, and its computational complexity of general case remains open. We show that Hamiltonian Path $\leq_P$ NVEP, and prove that NVEP is NP-complete.
We prove tight H\"olderian error bounds for all $p$-cones. Surprisingly, the exponents differ in several ways from those that have been previously conjectured; moreover, they illuminate $p$-cones as a curious example of a class of objects that possess properties in 3 dimensions that they do not in 4 or more. Using our error bounds, we analyse least squares problems with $p$-norm regularization, where our results enable us to compute the corresponding KL exponents for previously inaccessible values of $p$. Another application is a (relatively) simple proof that most $p$-cones are neither self-dual nor homogeneous. Our error bounds are obtained under the framework of facial residual functions, and we expand it by establishing for general cones an optimality criterion under which the resulting error bound must be tight.
In this article, we focus on the error that is committed when computing the matrix logarithm using the Gauss--Legendre quadrature rules. These formulas can be interpreted as Pad\'e approximants of a suitable Gauss hypergeometric function. Empirical observation tells us that the convergence of these quadratures becomes slow when the matrix is not close to the identity matrix, thus suggesting the usage of an inverse scaling and squaring approach for obtaining a matrix with this property. The novelty of this work is the introduction of error estimates that can be used to select a priori both the number of Legendre points needed to obtain a given accuracy and the number of inverse scaling and squaring to be performed. We include some numerical experiments to show the reliability of the estimates introduced.
We investigate the randomized decision tree complexity of a specific class of read-once threshold functions. A read-once threshold formula can be defined by a rooted tree, every internal node of which is labeled by a threshold function $T_k^n$ (with output 1 only when at least $k$ out of $n$ input bits are 1) and each leaf by a distinct variable. Such a tree defines a Boolean function in a natural way. We focus on the randomized decision tree complexity of such functions, when the underlying tree is a uniform tree with all its internal nodes labeled by the same threshold function. We prove lower bounds of the form $c(k,n)^d$, where $d$ is the depth of the tree. We also treat trees with alternating levels of AND and OR gates separately and show asymptotically optimal bounds, extending the known bounds for the binary case.
A modelling framework suitable for detecting shape shifts in functional profiles combining the notion of Fr\'echet mean and the concept of deformation models is developed and proposed. The generalized mean sense offered by the Fr\'echet mean notion is employed to capture the typical pattern of the profiles under study, while the concept of deformation models, and in particular of the shape invariant model, allows for interpretable parameterizations of profile's deviations from the typical shape. EWMA-type control charts compatible with the functional nature of data and the employed deformation model are built and proposed, exploiting certain shape characteristics of the profiles under study with respect to the generalized mean sense, allowing for the identification of potential shifts concerning the shape and/or the deformation process. Potential shifts in the shape deformation process, are further distinguished to significant shifts with respect to amplitude and/or the phase of the profile under study. The proposed modelling and shift detection framework is implemented to a real world case study, where daily concentration profiles concerning air pollutants from an area in the city of Athens are modelled, while profiles indicating hazardous concentration levels are successfully identified in most of the cases.