亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The study of hidden structures in data presents challenges in modern statistics and machine learning. We introduce the $\mathbf{gips}$ package in R, which identifies permutation subgroup symmetries in Gaussian vectors. $\mathbf{gips}$ serves two main purposes: exploratory analysis in discovering hidden permutation symmetries and estimating the covariance matrix under permutation symmetry. It is competitive to canonical methods in dimensionality reduction while providing a new interpretation of the results. $\mathbf{gips}$ implements a novel Bayesian model selection procedure within Gaussian vectors invariant under the permutation subgroup introduced in Graczyk, Ishi, Ko{\l}odziejek, Massam, Annals of Statistics, 50 (3) (2022).

相關內容

We present a relational representation of odd Sugihara chains. The elements of the algebra are represented as weakening relations over a particular poset which consists of two densely embedded copies of the rationals. Our construction mimics that of Maddux (2010) where a relational representation of the even Sugihara chains is given. An order automorphism between the two copies of the rationals is the key to ensuring that the identity element of the monoid is fixed by the involution.

We explain the methodology used to create the data submitted to HuMob Challenge, a data analysis competition for human mobility prediction. We adopted a personalized model to predict the individual's movement trajectory from their data, instead of predicting from the overall movement, based on the hypothesis that human movement is unique to each person. We devised the features such as the date and time, activity time, days of the week, time of day, and frequency of visits to POI (Point of Interest). As additional features, we incorporated the movement of other individuals with similar behavior patterns through the employment of clustering. The machine learning model we adopted was the Support Vector Regression (SVR). We performed accuracy through offline assessment and carried out feature selection and parameter tuning. Although overall dataset provided consists of 100,000 users trajectory, our method use only 20,000 target users data, and do not need to use other 80,000 data. Despite the personalized model's traditional feature engineering approach, this model yields reasonably good accuracy with lower computational cost.

In this paper the interpolating rational functions introduced by Floater and Hormann are generalized leading to a whole new family of rational functions depending on $\gamma$, an additional positive integer parameter. For $\gamma = 1$, the original Floater--Hormann interpolants are obtained. When $\gamma>1$ we prove that the new rational functions share a lot of the nice properties of the original Floater--Hormann functions. Indeed, for any configuration of nodes in a compact interval, they have no real poles, interpolate the given data, preserve the polynomials up to a certain fixed degree, and have a barycentric-type representation. Moreover, we estimate the associated Lebesgue constants in terms of the minimum ($h^*$) and maximum ($h$) distance between two consecutive nodes. It turns out that, in contrast to the original Floater-Hormann interpolants, for all $\gamma > 1$ we get uniformly bounded Lebesgue constants in the case of equidistant and quasi-equidistant nodes configurations (i.e., when $h\sim h^*$). For such configurations, as the number of nodes tends to infinity, we prove that the new interpolants ($\gamma>1$) uniformly converge to the interpolated function $f$, for any continuous function $f$ and all $\gamma>1$. The same is not ensured by the original FH interpolants ($\gamma=1$). Moreover, we provide uniform and pointwise estimates of the approximation error for functions having different degrees of smoothness. Numerical experiments illustrate the theoretical results and show a better error profile for less smooth functions compared to the original Floater-Hormann interpolants.

We develop randomized matrix-free algorithms for estimating partial traces. Our algorithm improves on the typicality-based approach used in [T. Chen and Y-C. Cheng, Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems, J. Chem. Phys. 157, 064106 (2022)] by deflating important subspaces (e.g. corresponding to the low-energy eigenstates) explicitly. This results in a significant variance reduction for matrices with quickly decaying singular values. We then apply our algorithm to study the thermodynamics of several Heisenberg spin systems, particularly the entanglement spectrum and ergotropy.

In the context of continual learning, prototypes-as representative class embeddings-offer advantages in memory conservation and the mitigation of catastrophic forgetting. However, challenges related to semantic drift and prototype interference persist. In this study, we introduce the Contrastive Prototypical Prompt (CPP) approach. Through task-specific prompt-tuning, underpinned by a contrastive learning objective, we effectively address both aforementioned challenges. Our evaluations on four challenging class-incremental benchmarks reveal that CPP achieves a significant 4% to 6% improvement over state-of-the-art methods. Importantly, CPP operates without a rehearsal buffer and narrows the performance divergence between continual and offline joint-learning, suggesting an innovative scheme for Transformer-based continual learning systems.

The topic of inverse problems, related to Maxwell's equations, in the presence of nonlinear materials is quite new in literature. The lack of contributions in this area can be ascribed to the significant challenges that such problems pose. Retrieving the spatial behaviour of some unknown physical property, starting from boundary measurements, is a nonlinear and highly ill-posed problem even in the presence of linear materials. And the complexity exponentially grows when the focus is on nonlinear material properties. Recently, the Monotonicity Principle has been extended to nonlinear materials under very general assumptions. Starting from the theoretical background given by this extension, we develop a first real-time inversion method for the inverse obstacle problem in the presence of nonlinear materials. The Monotonicity Principle is the foundation of a class of non-iterative algorithms for tomography of linear materials. It has been successfully applied to various problems, governed by different PDEs. In the linear case, MP based inversion methods ensure excellent performances and compatibility with real-time applications. We focus on problems governed by elliptical PDEs and, as an example of application, we treat the Magnetostatic Permeability Tomography problem, in which the aim is to retrieve the spatial behaviour of magnetic permeability through boundary measurements in DC operations. In this paper, we provide some preliminary results giving the foundation of our method and extended numerical examples.

State-of-the-art machine learning models can be vulnerable to very small input perturbations that are adversarially constructed. Adversarial training is an effective approach to defend against it. Formulated as a min-max problem, it searches for the best solution when the training data were corrupted by the worst-case attacks. Linear models are among the simple models where vulnerabilities can be observed and are the focus of our study. In this case, adversarial training leads to a convex optimization problem which can be formulated as the minimization of a finite sum. We provide a comparative analysis between the solution of adversarial training in linear regression and other regularization methods. Our main findings are that: (A) Adversarial training yields the minimum-norm interpolating solution in the overparameterized regime (more parameters than data), as long as the maximum disturbance radius is smaller than a threshold. And, conversely, the minimum-norm interpolator is the solution to adversarial training with a given radius. (B) Adversarial training can be equivalent to parameter shrinking methods (ridge regression and Lasso). This happens in the underparametrized region, for an appropriate choice of adversarial radius and zero-mean symmetrically distributed covariates. (C) For $\ell_\infty$-adversarial training -- as in square-root Lasso -- the choice of adversarial radius for optimal bounds does not depend on the additive noise variance. We confirm our theoretical findings with numerical examples.

Due to the significance and value in human-computer interaction and natural language processing, task-oriented dialog systems are attracting more and more attention in both academic and industrial communities. In this paper, we survey recent advances and challenges in an issue-specific manner. We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog system modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning to achieve better task-completion performance, and (3) integrating domain ontology knowledge into the dialog model in both pipeline and end-to-end models. We also review the recent progresses in dialog evaluation and some widely-used corpora. We believe that this survey can shed a light on future research in task-oriented dialog systems.

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司