The transition to a fully renewable energy grid requires better forecasting of demand at the low-voltage level to increase efficiency and ensure reliable control. However, high fluctuations and increasing electrification cause huge forecast variability, not reflected in traditional point estimates. Probabilistic load forecasts take future uncertainties into account and thus allow more informed decision-making for the planning and operation of low-carbon energy systems. We propose an approach for flexible conditional density forecasting of short-term load based on Bernstein polynomial normalizing flows, where a neural network controls the parameters of the flow. In an empirical study with 363 smart meter customers, our density predictions compare favorably against Gaussian and Gaussian mixture densities. Also, they outperform a non-parametric approach based on the pinball loss for 24h-ahead load forecasting for two different neural network architectures.
Among the most relevant processes in the Earth system for human habitability are quasi-periodic, ocean-driven multi-year events whose dynamics are currently incompletely characterized by physical models, and hence poorly predictable. This work aims at showing how 1) data-driven, stochastic machine learning approaches provide an affordable yet flexible means to forecast these processes; 2) the associated uncertainty can be properly calibrated with fast ensemble-based approaches. While the methodology introduced and discussed in this work pertains to synoptic scale events, the principle of augmenting incomplete or highly sensitive physical systems with data-driven models to improve predictability is far more general and can be extended to environmental problems of any scale in time or space.
Generation and exploration of approximate circuits and accelerators has been a prominent research domain to achieve energy-efficiency and/or performance improvements. This research has predominantly focused on ASICs, while not achieving similar gains when deployed for FPGA-based accelerator systems, due to the inherent architectural differences between the two. In this work, we propose a novel framework, Xel-FPGAs, which leverages statistical or machine learning models to effectively explore the architecture-space of state-of-the-art ASIC-based approximate circuits to cater them for FPGA-based systems given a simple RTL description of the target application. We have also evaluated the scalability of our framework on a multi-stage application using a hierarchical search strategy. The Xel-FPGAs framework is capable of reducing the exploration time by up to 95%, when compared to the default synthesis, place, and route approaches, while identifying an improved set of Pareto-optimal designs for a given application, when compared to the state-of-the-art. The complete framework is open-source and available online at //github.com/ehw-fit/xel-fpgas.
Growing apprehensions surrounding public safety have captured the attention of numerous governments and security agencies across the globe. These entities are increasingly acknowledging the imperative need for reliable and secure crowd-monitoring systems to address these concerns. Effectively managing human gatherings necessitates proactive measures to prevent unforeseen events or complications, ensuring a safe and well-coordinated environment. The scarcity of research focusing on crowd monitoring systems and their security implications has given rise to a burgeoning area of investigation, exploring potential approaches to safeguard human congregations effectively. Crowd monitoring systems depend on a bifurcated approach, encompassing vision-based and non-vision-based technologies. An in-depth analysis of these two methodologies will be conducted in this research. The efficacy of these approaches is contingent upon the specific environment and temporal context in which they are deployed, as they each offer distinct advantages. This paper endeavors to present an in-depth analysis of the recent incorporation of artificial intelligence (AI) algorithms and models into automated systems, emphasizing their contemporary applications and effectiveness in various contexts.
The emergence of large-scale wireless networks with partially-observable and time-varying dynamics has imposed new challenges on the design of optimal control policies. This paper studies efficient scheduling algorithms for wireless networks subject to generalized interference constraint, where mean arrival and mean service rates are unknown and non-stationary. This model exemplifies realistic edge devices' characteristics of wireless communication in modern networks. We propose a novel algorithm termed MW-UCB for generalized wireless network scheduling, which is based on the Max-Weight policy and leverages the Sliding-Window Upper-Confidence Bound to learn the channels' statistics under non-stationarity. MW-UCB is provably throughput-optimal under mild assumptions on the variability of mean service rates. Specifically, as long as the total variation in mean service rates over any time period grows sub-linearly in time, we show that MW-UCB can achieve the stability region arbitrarily close to the stability region of the class of policies with full knowledge of the channel statistics. Extensive simulations validate our theoretical results and demonstrate the favorable performance of MW-UCB.
Speech enhancement is a demanding task in automated speech processing pipelines, focusing on separating clean speech from noisy channels. Transformer based models have recently bested RNN and CNN models in speech enhancement, however at the same time they are much more computationally expensive and require much more high quality training data, which is always hard to come by. In this paper, we present an improvement for speech enhancement models that maintains the expressiveness of self-attention while significantly reducing model complexity, which we have termed Spectrum Attention Fusion. We carefully construct a convolutional module to replace several self-attention layers in a speech Transformer, allowing the model to more efficiently fuse spectral features. Our proposed model is able to achieve comparable or better results against SOTA models but with significantly smaller parameters (0.58M) on the Voice Bank + DEMAND dataset.
Automated synthesis of provably correct controllers for cyber-physical systems is crucial for deployment in safety-critical scenarios. However, hybrid features and stochastic or unknown behaviours make this problem challenging. We propose a method for synthesising controllers for Markov jump linear systems (MJLSs), a class of discrete-time models for cyber-physical systems, so that they certifiably satisfy probabilistic computation tree logic (PCTL) formulae. An MJLS consists of a finite set of stochastic linear dynamics and discrete jumps between these dynamics that are governed by a Markov decision process (MDP). We consider the cases where the transition probabilities of this MDP are either known up to an interval or completely unknown. Our approach is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS. We formalise this abstraction as an interval MDP (iMDP) for which we compute intervals of transition probabilities using sampling techniques from the so-called 'scenario approach', resulting in a probabilistically sound approximation. We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
The process of industrial box-packing, which involves the accurate placement of multiple objects, requires high-accuracy positioning and sequential actions. When a robot is tasked with placing an object at a specific location with high accuracy, it is important not only to have information about the location of the object to be placed, but also the posture of the object grasped by the robotic hand. Often, industrial box-packing requires the sequential placement of identically shaped objects into a single box. The robot's action should be determined by the same learned model. In factories, new kinds of products often appear and there is a need for a model that can easily adapt to them. Therefore, it should be easy to collect data to train the model. In this study, we designed a robotic system to automate real-world industrial tasks, employing a vision-based learning control model. We propose in-hand-view-sensitive Newtonian variational autoencoder (ihVS-NVAE), which employs an RGB camera to obtain in-hand postures of objects. We demonstrate that our model, trained for a single object-placement task, can handle sequential tasks without additional training. To evaluate efficacy of the proposed model, we employed a real robot to perform sequential industrial box-packing of multiple objects. Results showed that the proposed model achieved a 100% success rate in industrial box-packing tasks, thereby outperforming the state-of-the-art and conventional approaches, underscoring its superior effectiveness and potential in industrial tasks.
Privacy is an increasingly feeble constituent of the present datafied world and apparently the reason for that is clear: powerful actors worked to invade everyone's privacy for commercial and surveillance purposes. The existence of those actors and their agendas is undeniable, but the explanation is overly simplistic and contributed to create a narrative that tends to preserve the status quo. In this essay, I analyze several facets of the lack of online privacy and idiosyncrasies exhibited by privacy advocates, together with characteristics of the industry mostly responsible for the datafication process and why its asserted high effectiveness should be openly inquired. Then I discuss of possible effects of datafication on human behavior, the prevalent market-oriented assumption at the base of online privacy, and some emerging adaptation strategies. In the last part, the regulatory approach to online privacy is considered. The EU's GDPR is praised as the reference case of modern privacy regulations, but the same success hinders critical aspects that also emerged, from the quirks of the institutional decision process, to the flaws of the informed consent principle. A glimpse on the likely problematic future is provided with a discussion on privacy related aspects of EU, UK, and China's proposed generative AI policies.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.