We present the first $\varepsilon$-differentially private, computationally efficient algorithm that estimates the means of product distributions over $\{0,1\}^d$ accurately in total-variation distance, whilst attaining the optimal sample complexity to within polylogarithmic factors. The prior work had either solved this problem efficiently and optimally under weaker notions of privacy, or had solved it optimally while having exponential running times.
We consider the problem of learning a graph modeling the statistical relations of the $d$ variables of a dataset with $n$ samples $X \in \mathbb{R}^{n \times d}$. Standard approaches amount to searching for a precision matrix $\Theta$ representative of a Gaussian graphical model that adequately explains the data. However, most maximum likelihood-based estimators usually require storing the $d^{2}$ values of the empirical covariance matrix, which can become prohibitive in a high-dimensional setting. In this work, we adopt a compressive viewpoint and aim to estimate a sparse $\Theta$ from a sketch of the data, i.e. a low-dimensional vector of size $m \ll d^{2}$ carefully designed from $X$ using nonlinear random features. Under certain assumptions on the spectrum of $\Theta$ (or its condition number), we show that it is possible to estimate it from a sketch of size $m=\Omega((d+2k)\log(d))$ where $k$ is the maximal number of edges of the underlying graph. These information-theoretic guarantees are inspired by compressed sensing theory and involve restricted isometry properties and instance optimal decoders. We investigate the possibility of achieving practical recovery with an iterative algorithm based on the graphical lasso, viewed as a specific denoiser. We compare our approach and graphical lasso on synthetic datasets, demonstrating its favorable performance even when the dataset is compressed.
Suppose we observe a Poisson process in real time for which the intensity may take on two possible values $\lambda_0$ and $\lambda_1$. Suppose further that the priori probability of the true intensity is not given. We solve a minimax version of Bayesian problem of sequential testing of two simple hypotheses to minimize a linear combination of the probability of wrong detection and the expected waiting time in the worst scenario of all possible priori distributions. An equivalent characterization for the least favorable distributions is derived and a sufficient condition for the existence is concluded.
We provide an algorithm which, with high probability, maintains a $(1-\epsilon)$-approximate maximum flow on an undirected graph undergoing $m$-edge additions in amortized $m^{o(1)} \epsilon^{-3}$ time per update. To obtain this result, we provide a more general algorithm that solves what we call the incremental, thresholded $p$-norm flow problem that asks to determine the first edge-insertion in an undirected graph that causes the minimum $\ell_p$-norm flow to decrease below a given threshold in value. Since we solve this thresholded problem, our data structure succeeds against an adaptive adversary that can only see the data structure's output. Furthermore, since our algorithm holds for $p = 2$, we obtain improved algorithms for dynamically maintaining the effective resistance between a pair of vertices in an undirected graph undergoing edge insertions. Our algorithm builds upon previous dynamic algorithms for approximately solving the minimum-ratio cycle problem that underlie previous advances on the maximum flow problem [Chen-Kyng-Liu-Peng-Probst Gutenberg-Sachdeva, FOCS '22] as well as recent dynamic maximum flow algorithms [v.d.Brand-Liu-Sidford, STOC '23]. Instead of using interior point methods, which were a key component of these recent advances, our algorithm uses an optimization method based on $\ell_p$-norm iterative refinement and the multiplicative weight update method. This ensures a monotonicity property in the minimum-ratio cycle subproblems that allows us to apply known data structures and bypass issues arising from adaptive queries.
In this article, we study the inconsistency of a system of $\max-T$ fuzzy relational equations of the form $A \Box_{T}^{\max} x = b$, where $T$ is a t-norm among $\min$, the product or Lukasiewicz's t-norm. For an inconsistent $\max-T$ system, we directly construct a canonical maximal consistent subsystem (w.r.t the inclusion order). The main tool used to obtain it is the analytical formula which compute the Chebyshev distance $\Delta = \inf_{c \in \mathcal{C}} \Vert b - c \Vert$ associated to the inconsistent $\max-T$ system, where $\mathcal{C}$ is the set of second members of consistent systems defined with the same matrix $A$. Based on the same analytical formula, we give, for an inconsistent $\max-\min$ system, an efficient method to obtain all its consistent subsystems, and we show how to iteratively get all its maximal consistent subsystems.
Data depth is an efficient tool for robustly summarizing the distribution of functional data and detecting potential magnitude and shape outliers. Commonly used functional data depth notions, such as the modified band depth and extremal depth, are estimated from pointwise depth for each observed functional observation. However, these techniques require calculating one single depth value for each functional observation, which may not be sufficient to characterize the distribution of the functional data and detect potential outliers. This paper presents an innovative approach to make the best use of pointwise depth. We propose using the pointwise depth distribution for magnitude outlier visualization and the correlation between pairwise depth for shape outlier detection. Furthermore, a bootstrap-based testing procedure has been introduced for the correlation to test whether there is any shape outlier. The proposed univariate methods are then extended to bivariate functional data. The performance of the proposed methods is examined and compared to conventional outlier detection techniques by intensive simulation studies. In addition, the developed methods are applied to simulated solar energy datasets from a photovoltaic system. Results revealed that the proposed method offers superior detection performance over conventional techniques. These findings will benefit engineers and practitioners in monitoring photovoltaic systems by detecting unnoticed anomalies and outliers.
We provide the first $\mathit{constant}$-$\mathit{round}$ construction of post-quantum non-malleable commitments under the minimal assumption that $\mathit{post}$-$\mathit{quantum}$ $\mathit{one}$-$\mathit{way}$ $\mathit{functions}$ exist. We achieve the standard notion of non-malleability with respect to commitments. Prior constructions required $\Omega(\log^*\lambda)$ rounds under the same assumption. We achieve our results through a new technique for constant-round non-malleable commitments which is easier to use in the post-quantum setting. The technique also yields an almost elementary proof of security for constant-round non-malleable commitments in the classical setting, which may be of independent interest. When combined with existing work, our results yield the first constant-round quantum-secure multiparty computation for both classical and quantum functionalities $\mathit{in}$ $\mathit{the}$ $\mathit{plain}$ $\mathit{model}$, under the $\mathit{polynomial}$ hardness of quantum fully-homomorphic encryption and quantum learning with errors.
In adaptive data analysis, a mechanism gets $n$ i.i.d. samples from an unknown distribution $D$, and is required to provide accurate estimations to a sequence of adaptively chosen statistical queries with respect to $D$. Hardt and Ullman (FOCS 2014) and Steinke and Ullman (COLT 2015) showed that in general, it is computationally hard to answer more than $\Theta(n^2)$ adaptive queries, assuming the existence of one-way functions. However, these negative results strongly rely on an adversarial model that significantly advantages the adversarial analyst over the mechanism, as the analyst, who chooses the adaptive queries, also chooses the underlying distribution $D$. This imbalance raises questions with respect to the applicability of the obtained hardness results -- an analyst who has complete knowledge of the underlying distribution $D$ would have little need, if at all, to issue statistical queries to a mechanism which only holds a finite number of samples from $D$. We consider more restricted adversaries, called \emph{balanced}, where each such adversary consists of two separated algorithms: The \emph{sampler} who is the entity that chooses the distribution and provides the samples to the mechanism, and the \emph{analyst} who chooses the adaptive queries, but has no prior knowledge of the underlying distribution (and hence has no a priori advantage with respect to the mechanism). We improve the quality of previous lower bounds by revisiting them using an efficient \emph{balanced} adversary, under standard public-key cryptography assumptions. We show that these stronger hardness assumptions are unavoidable in the sense that any computationally bounded \emph{balanced} adversary that has the structure of all known attacks, implies the existence of public-key cryptography.
\textit{Relative overgeneralization} (RO) occurs in cooperative multi-agent learning tasks when agents converge towards a suboptimal joint policy due to overfitting to suboptimal behavior of other agents. In early work, optimism has been shown to mitigate the \textit{RO} problem when using tabular Q-learning. However, with function approximation optimism can amplify overestimation and thus fail on complex tasks. On the other hand, recent deep multi-agent policy gradient (MAPG) methods have succeeded in many complex tasks but may fail with severe \textit{RO}. We propose a general, yet simple, framework to enable optimistic updates in MAPG methods and alleviate the RO problem. Specifically, we employ a \textit{Leaky ReLU} function where a single hyperparameter selects the degree of optimism to reshape the advantages when updating the policy. Intuitively, our method remains optimistic toward individual actions with lower returns which are potentially caused by other agents' sub-optimal behavior during learning. The optimism prevents the individual agents from quickly converging to a local optimum. We also provide a formal analysis from an operator view to understand the proposed advantage transformation. In extensive evaluations on diverse sets of tasks, including illustrative matrix games, complex \textit{Multi-agent MuJoCo} and \textit{Overcooked} benchmarks, the proposed method\footnote{Code can be found at \url{//github.com/wenshuaizhao/optimappo}.} outperforms strong baselines on 13 out of 19 tested tasks and matches the performance on the rest.
Recent works in learning-integrated optimization have shown promise in settings where the optimization problem is only partially observed or where general-purpose optimizers perform poorly without expert tuning. By learning an optimizer $\mathbf{g}$ to tackle these challenging problems with $f$ as the objective, the optimization process can be substantially accelerated by leveraging past experience. The optimizer can be trained with supervision from known optimal solutions or implicitly by optimizing the compound function $f\circ \mathbf{g}$. The implicit approach may not require optimal solutions as labels and is capable of handling problem uncertainty; however, it is slow to train and deploy due to frequent calls to optimizer $\mathbf{g}$ during both training and testing. The training is further challenged by sparse gradients of $\mathbf{g}$, especially for combinatorial solvers. To address these challenges, we propose using a smooth and learnable Landscape Surrogate $M$ as a replacement for $f\circ \mathbf{g}$. This surrogate, learnable by neural networks, can be computed faster than the solver $\mathbf{g}$, provides dense and smooth gradients during training, can generalize to unseen optimization problems, and is efficiently learned via alternating optimization. We test our approach on both synthetic problems, including shortest path and multidimensional knapsack, and real-world problems such as portfolio optimization, achieving comparable or superior objective values compared to state-of-the-art baselines while reducing the number of calls to $\mathbf{g}$. Notably, our approach outperforms existing methods for computationally expensive high-dimensional problems.
We consider the problem of \emph{blocked} collaborative bandits where there are multiple users, each with an associated multi-armed bandit problem. These users are grouped into \emph{latent} clusters such that the mean reward vectors of users within the same cluster are identical. Our goal is to design algorithms that maximize the cumulative reward accrued by all the users over time, under the \emph{constraint} that no arm of a user is pulled more than $\mathsf{B}$ times. This problem has been originally considered by \cite{Bresler:2014}, and designing regret-optimal algorithms for it has since remained an open problem. In this work, we propose an algorithm called \texttt{B-LATTICE} (Blocked Latent bAndiTs via maTrIx ComplEtion) that collaborates across users, while simultaneously satisfying the budget constraints, to maximize their cumulative rewards. Theoretically, under certain reasonable assumptions on the latent structure, with $\mathsf{M}$ users, $\mathsf{N}$ arms, $\mathsf{T}$ rounds per user, and $\mathsf{C}=O(1)$ latent clusters, \texttt{B-LATTICE} achieves a per-user regret of $\widetilde{O}(\sqrt{\mathsf{T}(1 + \mathsf{N}\mathsf{M}^{-1})}$ under a budget constraint of $\mathsf{B}=\Theta(\log \mathsf{T})$. These are the first sub-linear regret bounds for this problem, and match the minimax regret bounds when $\mathsf{B}=\mathsf{T}$. Empirically, we demonstrate that our algorithm has superior performance over baselines even when $\mathsf{B}=1$. \texttt{B-LATTICE} runs in phases where in each phase it clusters users into groups and collaborates across users within a group to quickly learn their reward models.