亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of learning a graph modeling the statistical relations of the $d$ variables of a dataset with $n$ samples $X \in \mathbb{R}^{n \times d}$. Standard approaches amount to searching for a precision matrix $\Theta$ representative of a Gaussian graphical model that adequately explains the data. However, most maximum likelihood-based estimators usually require storing the $d^{2}$ values of the empirical covariance matrix, which can become prohibitive in a high-dimensional setting. In this work, we adopt a compressive viewpoint and aim to estimate a sparse $\Theta$ from a sketch of the data, i.e. a low-dimensional vector of size $m \ll d^{2}$ carefully designed from $X$ using nonlinear random features. Under certain assumptions on the spectrum of $\Theta$ (or its condition number), we show that it is possible to estimate it from a sketch of size $m=\Omega((d+2k)\log(d))$ where $k$ is the maximal number of edges of the underlying graph. These information-theoretic guarantees are inspired by compressed sensing theory and involve restricted isometry properties and instance optimal decoders. We investigate the possibility of achieving practical recovery with an iterative algorithm based on the graphical lasso, viewed as a specific denoiser. We compare our approach and graphical lasso on synthetic datasets, demonstrating its favorable performance even when the dataset is compressed.

相關內容

We develop a general theory to optimize the frequentist regret for sequential learning problems, where efficient bandit and reinforcement learning algorithms can be derived from unified Bayesian principles. We propose a novel optimization approach to generate "algorithmic beliefs" at each round, and use Bayesian posteriors to make decisions. The optimization objective to create "algorithmic beliefs," which we term "Algorithmic Information Ratio," represents an intrinsic complexity measure that effectively characterizes the frequentist regret of any algorithm. To the best of our knowledge, this is the first systematical approach to make Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and optimal manner. Moreover, the algorithms are simple and often efficient to implement. As a major application, we present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance in the stochastic, adversarial, and non-stationary environments. And we illustrate how these principles can be used in linear bandits, bandit convex optimization, and reinforcement learning.

Duan, Wu and Zhou (FOCS 2023) recently obtained the improved upper bound on the exponent of square matrix multiplication $\omega<2.3719$ by introducing a new approach to quantify and compensate the ``combination loss" in prior analyses of powers of the Coppersmith-Winograd tensor. In this paper we show how to use this new approach to improve the exponent of rectangular matrix multiplication as well. Our main technical contribution is showing how to combine this analysis of the combination loss and the analysis of the fourth power of the Coppersmith-Winograd tensor in the context of rectangular matrix multiplication developed by Le Gall and Urrutia (SODA 2018).

We find a succinct expression for computing the sequence $x_t = a_t x_{t-1} + b_t$ in parallel with two prefix sums, given $t = (1, 2, \dots, n)$, $a_t \in \mathbb{R}^n$, $b_t \in \mathbb{R}^n$, and initial value $x_0 \in \mathbb{R}$. On $n$ parallel processors, the computation of $n$ elements incurs $\mathcal{O}(\log n)$ time and $\mathcal{O}(n)$ space. Sequences of this form are ubiquitous in science and engineering, making efficient parallelization useful for a vast number of applications. We implement our expression in software, test it on parallel hardware, and verify that it executes faster than sequential computation by a factor of $\frac{n}{\log n}$.

Join-preserving maps on the discrete time scale $\omega^+$, referred to as time warps, have been proposed as graded modalities that can be used to quantify the growth of information in the course of program execution. The set of time warps forms a simple distributive involutive residuated lattice -- called the time warp algebra -- that is equipped with residual operations relevant to potential applications. In this paper, we show that although the time warp algebra generates a variety that lacks the finite model property, it nevertheless has a decidable equational theory. We also describe an implementation of a procedure for deciding equations in this algebra, written in the OCaml programming language, that makes use of the Z3 theorem prover.

Secure multiparty computation (MPC) schemes allow two or more parties to conjointly compute a function on their private input sets while revealing nothing but the output. Existing state-of-the-art number-theoretic-based designs face the threat of attacks through quantum algorithms. In this context, we present secure MPC protocols that can withstand quantum attacks. We first present the design and analysis of an information-theoretic secure oblivious linear evaluation (OLE), namely ${\sf qOLE}$ in the quantum domain, and show that our ${\sf qOLE}$ is safe from external attacks. In addition, our scheme satisfies all the security requirements of a secure OLE. We further utilize ${\sf qOLE}$ as a building block to construct a quantum-safe multiparty private set intersection (MPSI) protocol.

The target stationary distribution problem (TSDP) is the following: given an irreducible stochastic matrix $G$ and a target stationary distribution $\hat \mu$, construct a minimum norm perturbation, $\Delta$, such that $\hat G = G+\Delta$ is also stochastic and has the prescribed target stationary distribution, $\hat \mu$. In this paper, we revisit the TSDP under a constraint on the support of $\Delta$, that is, on the set of non-zero entries of $\Delta$. This is particularly meaningful in practice since one cannot typically modify all entries of $G$. We first show how to construct a feasible solution $\hat G$ that has essentially the same support as the matrix $G$. Then we show how to compute globally optimal and sparse solutions using the component-wise $\ell_1$ norm and linear optimization. We propose an efficient implementation that relies on a column-generation approach which allows us to solve sparse problems of size up to $10^5 \times 10^5$ in a few minutes. We illustrate the proposed algorithms with several numerical experiments.

We study three levels in a hierarchy of nondeterminism: A nondeterministic automaton $\mathcal{A}$ is determinizable by pruning (DBP) if we can obtain a deterministic automaton equivalent to $\mathcal{A}$ by removing some of its transitions. Then, $\mathcal{A}$ is history deterministic (HD) if its nondeterministic choices can be resolved in a way that only depends on the past. Finally, $\mathcal{A}$ is semantically deterministic (SD) if different nondeterministic choices in $\mathcal{A}$ lead to equivalent states. Some applications of automata in formal methods require deterministic automata, yet in fact can use automata with some level of nondeterminism. For example, DBP automata are useful in the analysis of online algorithms, and HD automata are useful in synthesis and control. For automata on finite words, the three levels in the hierarchy coincide. We study the hierarchy for B\"uchi, co-B\"uchi, and weak automata on infinite words. We show that the hierarchy is strict, study the expressive power of the different levels in it, as well as the complexity of deciding the membership of a language in a given level. Finally, we describe a probability-based analysis of the hierarchy, which relates the level of nondeterminism with the probability that a random run on a word in the language is accepting. We relate the latter to nondeterministic automata that can be used when reasoning about probabilistic systems.

We show an $O(n)$-time reduction from the problem of testing whether a multiset of positive integers can be partitioned into two multisets so that the sum of the integers in each multiset is equal to $n/2$ to the problem of testing whether an $n$-vertex biconnected outerplanar DAG admits an upward planar drawing. This constitutes the first barrier to the existence of efficient algorithms for testing the upward planarity of DAGs with no large triconnected minor. We also show a result in the opposite direction. Suppose that partitioning a multiset of positive integers into two multisets so that the sum of the integers in each multiset is $n/2$ can be solved in $f(n)$ time. Let $G$ be an $n$-vertex biconnected outerplanar DAG and $e$ be an edge incident to the outer face of an outerplanar drawing of $G$. Then it can be tested in $O(f(n))$ time whether $G$ admits an upward planar drawing with $e$ on the outer face.

The sliding cubes model is a well-established theoretical framework that supports the analysis of reconfiguration algorithms for modular robots consisting of face-connected cubes. The best algorithm currently known for the reconfiguration problem, by Abel and Kominers [arXiv, 2011], uses O(n3) moves to transform any n-cube configuration into any other n-cube configuration. As is common in the literature, this algorithm reconfigures the input into an intermediate canonical shape. In this paper we present an in-place algorithm that reconfigures any n-cube configuration into a compact canonical shape using a number of moves proportional to the sum of coordinates of the input cubes. This result is asymptotically optimal. Furthermore, our algorithm directly extends to dimensions higher than three.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司