We numerically investigate the generalized Steklov problem for the modified Helmholtz equation and focus on the relation between its spectrum and the geometric structure of the domain. We address three distinct aspects: (i) the asymptotic behavior of eigenvalues for polygonal domains; (ii) the dependence of the integrals of eigenfunctions on the domain symmetries; and (iii) the localization and exponential decay of Steklov eigenfunctions away from the boundary for smooth shapes and in the presence of corners. For this purpose, we implemented two complementary numerical methods to compute the eigenvalues and eigenfunctions of the associated Dirichlet-to-Neumann operator for various simply-connected planar domains. We also discuss applications of the obtained results in the theory of diffusion-controlled reactions and formulate several conjectures with relevance in spectral geometry.
In this paper, a two-sided variable-coefficient space-fractional diffusion equation with fractional Neumann boundary condition is considered. To conquer the weak singularity caused by the nonlocal space-fractional differential operators, by introducing an auxiliary fractional flux variable and using piecewise linear interpolations, a fractional block-centered finite difference (BCFD) method on general nonuniform grids is proposed. However, like other numerical methods, the proposed method still produces linear algebraic systems with unstructured dense coefficient matrices under the general nonuniform grids.Consequently, traditional direct solvers such as Gaussian elimination method shall require $\mathcal{O}(M^2)$ memory and $\mathcal{O}(M^3)$ computational work per time level, where $M$ is the number of spatial unknowns in the numerical discretization. To address this issue, we combine the well-known sum-of-exponentials (SOE) approximation technique with the fractional BCFD method to propose a fast version fractional BCFD algorithm. Based upon the Krylov subspace iterative methods, fast matrix-vector multiplications of the resulting coefficient matrices with any vector are developed, in which they can be implemented in only $\mathcal{O}(MN_{exp})$ operations per iteration, where $N_{exp}\ll M$ is the number of exponentials in the SOE approximation. Moreover, the coefficient matrices do not necessarily need to be generated explicitly, while they can be stored in $\mathcal{O}(MN_{exp})$ memory by only storing some coefficient vectors. Numerical experiments are provided to demonstrate the efficiency and accuracy of the method.
Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex optimization that sequentially minimizes a majorizing surrogate of the objective function in each block coordinate while the other block coordinates are held fixed. We consider a family of BMM algorithms for minimizing smooth nonconvex objectives, where each parameter block is constrained within a subset of a Riemannian manifold. We establish that this algorithm converges asymptotically to the set of stationary points, and attains an $\epsilon$-stationary point within $\widetilde{O}(\epsilon^{-2})$ iterations. In particular, the assumptions for our complexity results are completely Euclidean when the underlying manifold is a product of Euclidean or Stiefel manifolds, although our analysis makes explicit use of the Riemannian geometry. Our general analysis applies to a wide range of algorithms with Riemannian constraints: Riemannian MM, block projected gradient descent, optimistic likelihood estimation, geodesically constrained subspace tracking, robust PCA, and Riemannian CP-dictionary-learning. We experimentally validate that our algorithm converges faster than standard Euclidean algorithms applied to the Riemannian setting.
The aim of this paper is to give a systematic mathematical interpretation of the diffusion problem on which Graph Neural Networks (GNNs) models are based. The starting point of our approach is a dissipative functional leading to dynamical equations which allows us to study the symmetries of the model. We discuss the conserved charges and provide a charge-preserving numerical method for solving the dynamical equations. In any dynamical system and also in GRAph Neural Diffusion (GRAND), knowing the charge values and their conservation along the evolution flow could provide a way to understand how GNNs and other networks work with their learning capabilities.
We investigate the performance of two approximation algorithms for the Hafnian of a nonnegative square matrix, namely the Barvinok and Godsil-Gutman estimators. We observe that, while there are examples of matrices for which these algorithms fail to provide a good approximation, the algorithms perform surprisingly well for adjacency matrices of random graphs. In most cases, the Godsil-Gutman estimator provides a far superior accuracy. For dense graphs, however, both estimators demonstrate a slow growth of the variance. For complete graphs, we show analytically that the relative variance $\sigma / \mu$ grows as a square root of the size of the graph. Finally, we simulate a Gaussian Boson Sampling experiment using the Godsil-Gutman estimator and show that the technique used can successfully reproduce low-order correlation functions.
We present a comprehensive analysis of the implications of artificial latency in the Proposer-Builder Separation framework on the Ethereum network. Focusing on the MEV-Boost auction system, we analyze how strategic latency manipulation affects Maximum Extractable Value yields and network integrity. Our findings reveal both increased profitability for node operators and significant systemic challenges, including heightened network inefficiencies and centralization risks. We empirically validates these insights with a pilot that Chorus One has been operating on Ethereum mainnet. We demonstrate the nuanced effects of latency on bid selection and validator dynamics. Ultimately, this research underscores the need for balanced strategies that optimize Maximum Extractable Value capture while preserving the Ethereum network's decentralization ethos.
We investigate the effect of the well-known Mycielski construction on the Shannon capacity of graphs and on one of its most prominent upper bounds, the (complementary) Lov\'asz theta number. We prove that if the Shannon capacity of a graph, the distinguishability graph of a noisy channel, is attained by some finite power, then its Mycielskian has strictly larger Shannon capacity than the graph itself. For the complementary Lov\'asz theta function we show that its value on the Mycielskian of a graph is completely determined by its value on the original graph, a phenomenon similar to the one discovered for the fractional chromatic number by Larsen, Propp and Ullman. We also consider the possibility of generalizing our results on the Sperner capacity of directed graphs and on the generalized Mycielsky construction. Possible connections with what Zuiddam calls the asymptotic spectrum of graphs are discussed as well.
This paper develops some theory of the matrix Dyson equation (MDE) for correlated linearizations and uses it to solve a problem on asymptotic deterministic equivalent for the test error in random features regression. The theory developed for the correlated MDE includes existence-uniqueness, spectral support bounds, and stability properties of the MDE. This theory is new for constructing deterministic equivalents for pseudoresolvents of a class of correlated linear pencils. In the application, this theory is used to give a deterministic equivalent of the test error in random features ridge regression, in a proportional scaling regime, wherein we have conditioned on both training and test datasets.
Discovering underlying structures of causal relations from observational studies poses a great challenge in scientific research where randomized trials or intervention-based studies are infeasible. This challenge pertains to the lack of knowledge on pre-specified roles of cause and effect in observations studies. Leveraging Shannon's seminal work on information theory, we propose a new conceptual framework of asymmetry where any causal link between putative cause and effect is captured by unequal information flows from one variable to another. We present an entropy-based asymmetry coefficient that not only enables us to assess for whether one variable is a stronger predictor of the other, but also detects an imprint of the underlying causal relation in observational studies. Our causal discovery analytics can accommodate low-dimensional confounders naturally. The proposed methodology relies on scalable non-parametric density estimation using fast Fourier transformation, making the resulting estimation method manyfold faster than the classical bandwidth-based density estimation while maintaining comparable mean integrated squared error rates. We investigate key asymptotic properties of our methodology and utilize a data-splitting and cross-fitting technique to facilitate inference for the direction of causal relations. We illustrate the performance of our methodology through simulation studies and real data examples.
This manuscript is devoted to investigating the conservation laws of incompressible Navier-Stokes equations(NSEs), written in the energy-momentum-angular momentum conserving(EMAC) formulation, after being linearized by the two-level methods. With appropriate correction steps(e.g., Stoke/Newton corrections), we show that the two-level methods, discretized from EMAC NSEs, could preserve momentum, angular momentum, and asymptotically preserve energy. Error estimates and (asymptotic) conservative properties are analyzed and obtained, and numerical experiments are conducted to validate the theoretical results, mainly confirming that the two-level linearized methods indeed possess the property of (almost) retainability on conservation laws. Moreover, experimental error estimates and optimal convergence rates of two newly defined types of pressure approximation in EMAC NSEs are also obtained.
Inverse problems, which are related to Maxwell's equations, in the presence of nonlinear materials is a quite new topic in the literature. The lack of contributions in this area can be ascribed to the significant challenges that such problems pose. Retrieving the spatial behaviour of some unknown physical property, from boundary measurements, is a nonlinear and highly ill-posed problem even in the presence of linear materials. Furthermore, this complexity grows exponentially in the presence of nonlinear materials. In the tomography of linear materials, the Monotonicity Principle (MP) is the foundation of a class of non-iterative algorithms able to guarantee excellent performances and compatibility with real-time applications. Recently, the MP has been extended to nonlinear materials under very general assumptions. Starting from the theoretical background for this extension, we develop a first real-time inversion method for the inverse obstacle problem in the presence of nonlinear materials. The proposed method is intendend for all problems governed by the quasilinear Laplace equation, i.e. static problems involving nonlinear materials. In this paper, we provide some preliminary results which give the foundation of our method and some extended numerical examples.