An informative measurement is the most efficient way to gain information about an unknown state. We present a first-principles derivation of a general-purpose dynamic programming algorithm that returns an optimal sequence of informative measurements by sequentially maximizing the entropy of possible measurement outcomes. This algorithm can be used by an autonomous agent or robot to decide where best to measure next, planning a path corresponding to an optimal sequence of informative measurements. The algorithm is applicable to states and controls that are either continuous or discrete, and agent dynamics that is either stochastic or deterministic; including Markov decision processes and Gaussian processes. Recent results from the fields of approximate dynamic programming and reinforcement learning, including on-line approximations such as rollout and Monte Carlo tree search, allow the measurement task to be solved in real time. The resulting solutions include non-myopic paths and measurement sequences that can generally outperform, sometimes substantially, commonly used greedy approaches. This is demonstrated for a global search task, where on-line planning for a sequence of local searches is found to reduce the number of measurements in the search by approximately half. A variant of the algorithm is derived for Gaussian processes for active sensing.
Normalized random measures with independent increments represent a large class of Bayesian nonaprametric priors and are widely used in the Bayesian nonparametric framework. In this paper, we provide the posterior consistency analysis for normalized random measures with independent increments (NRMIs) through the corresponding Levy intensities used to characterize the completely random measures in the construction of NRMIs. Assumptions are introduced on the Levy intensities to analyze the posterior consistency of NRMIs and are verified with multiple interesting examples. A focus of the paper is the Bernstein-von Mises theorem for the normalized generalized gamma process (NGGP) when the true distribution of the sample is discrete or continuous. When the Bernstein-von Mises theorem is applied to construct credible sets, in addition to the usual form there will be an additional bias term on the left endpoint closely related to the number of atoms of the true distribution when it is discrete. We also discuss the affect of the estimators for the model parameters of the NGGP under the Bernstein-von Mises convergences. Finally, to further explain the necessity of adding the bias correction in constructing credible sets, we illustrate numerically how the bias correction affects the coverage of the true value by the credible sets when the true distribution is discrete.
The imsets of \citet{studeny2006probabilistic} are an algebraic method for representing conditional independence models. They have many attractive properties when applied to such models, and they are particularly nice for working with directed acyclic graph (DAG) models. In particular, the `standard' imset for a DAG is in one-to-one correspondence with the independences it induces, and hence is a label for its Markov equivalence class. We first present a proposed extension to standard imsets for maximal ancestral graph (MAG) models, using the parameterizing set representation of \citet{hu2020faster}. We show that for many such graphs our proposed imset is \emph{perfectly Markovian} with respect to the graph, including \emph{simple} MAGs, as well as for a large class of purely bidirected models. Thus providing a scoring criteria by measuring the discrepancy for a list of independences that define the model; this gives an alternative to the usual BIC score that is much easier to compute. We also show that, of independence models that do represent the MAG, the one we give is the simplest possible, in a manner we make precise. Unfortunately, for some graphs the representation does not represent all the independences in the model, and in certain cases does not represent any at all. For these general MAGs, we refine the reduced ordered local Markov property \citep{richardlocalmarkov} by a novel graphical tool called \emph{power DAGs}, and this results in an imset that induces the correct model and which, under a mild condition, can be constructed in polynomial time.
Generalized linear mixed models are powerful tools for analyzing clustered data, where the unknown parameters are classically (and most commonly) estimated by the maximum likelihood and restricted maximum likelihood procedures. However, since the likelihood based procedures are known to be highly sensitive to outliers, M-estimators have become popular as a means to obtain robust estimates under possible data contamination. In this paper, we prove that, for sufficiently smooth general loss functions defining the M-estimators in generalized linear mixed models, the tail probability of the deviation between the estimated and the true regression coefficients have an exponential bound. This implies an exponential rate of consistency of these M-estimators under appropriate assumptions, generalizing the existing exponential consistency results from univariate to multivariate responses. We have illustrated this theoretical result further for the special examples of the maximum likelihood estimator and the robust minimum density power divergence estimator, a popular example of model-based M-estimators, in the settings of linear and logistic mixed models, comparing it with the empirical rate of convergence through simulation studies.
We study the computational complexity of multi-stage robust optimization problems. Such problems are formulated with alternating min/max quantifiers and therefore naturally fall into a higher stage of the polynomial hierarchy. Despite this, almost no hardness results with respect to the polynomial hierarchy are known. In this work, we examine the hardness of robust two-stage adjustable and robust recoverable optimization with budgeted uncertainty sets. Our main technical contribution is the introduction of a technique tailored to prove $\Sigma^p_3$-hardness of such problems. We highlight a difference between continuous and discrete budgeted uncertainty: In the discrete case, indeed a wide range of problems becomes complete for the third stage of the polynomial hierarchy; in particular, this applies to the TSP, independent set, and vertex cover problems. However, in the continuous case this does not happen and problems remain in the first stage of the hierarchy. Finally, if we allow the uncertainty to not only affect the objective, but also multiple constraints, then this distinction disappears and even in the continuous case we encounter hardness for the third stage of the hierarchy. This shows that even robust problems which are already NP-complete can still exhibit a significant computational difference between column-wise and row-wise uncertainty.
Estimating the entropy rate of discrete time series is a challenging problem with important applications in numerous areas including neuroscience, genomics, image processing and natural language processing. A number of approaches have been developed for this task, typically based either on universal data compression algorithms, or on statistical estimators of the underlying process distribution. In this work, we propose a fully-Bayesian approach for entropy estimation. Building on the recently introduced Bayesian Context Trees (BCT) framework for modelling discrete time series as variable-memory Markov chains, we show that it is possible to sample directly from the induced posterior on the entropy rate. This can be used to estimate the entire posterior distribution, providing much richer information than point estimates. We develop theoretical results for the posterior distribution of the entropy rate, including proofs of consistency and asymptotic normality. The practical utility of the method is illustrated on both simulated and real-world data, where it is found to outperform state-of-the-art alternatives.
Most continual learning (CL) algorithms have focused on tackling the stability-plasticity dilemma, that is, the challenge of preventing the forgetting of previous tasks while learning new ones. However, they have overlooked the impact of the knowledge transfer when the dataset in a certain task is biased - namely, when some unintended spurious correlations of the tasks are learned from the biased dataset. In that case, how would they affect learning future tasks or the knowledge already learned from the past tasks? In this work, we carefully design systematic experiments using one synthetic and two real-world datasets to answer the question from our empirical findings. Specifically, we first show through two-task CL experiments that standard CL methods, which are unaware of dataset bias, can transfer biases from one task to another, both forward and backward, and this transfer is exacerbated depending on whether the CL methods focus on the stability or the plasticity. We then present that the bias transfer also exists and even accumulate in longer sequences of tasks. Finally, we propose a simple, yet strong plug-in method for debiasing-aware continual learning, dubbed as Group-class Balanced Greedy Sampling (BGS). As a result, we show that our BGS can always reduce the bias of a CL model, with a slight loss of CL performance at most.
Personalized recommender systems have been widely studied and deployed to reduce information overload and satisfy users' diverse needs. However, conventional recommendation models solely conduct a one-time training-test fashion and can hardly adapt to evolving demands, considering user preference shifts and ever-increasing users and items in the real world. To tackle such challenges, the streaming recommendation is proposed and has attracted great attention recently. Among these, continual graph learning is widely regarded as a promising approach for the streaming recommendation by academia and industry. However, existing methods either rely on the historical data replay which is often not practical under increasingly strict data regulations, or can seldom solve the \textit{over-stability} issue. To overcome these difficulties, we propose a novel \textbf{D}ynamically \textbf{E}xpandable \textbf{G}raph \textbf{C}onvolution (DEGC) algorithm from a \textit{model isolation} perspective for the streaming recommendation which is orthogonal to previous methods. Based on the motivation of disentangling outdated short-term preferences from useful long-term preferences, we design a sequence of operations including graph convolution pruning, refining, and expanding to only preserve beneficial long-term preference-related parameters and extract fresh short-term preferences. Moreover, we model the temporal user preference, which is utilized as user embedding initialization, for better capturing the individual-level preference shifts. Extensive experiments on the three most representative GCN-based recommendation models and four industrial datasets demonstrate the effectiveness and robustness of our method.
A linear arrangement is a mapping $\pi$ from the $n$ vertices of a graph $G$ to $n$ distinct consecutive integers. Linear arrangements can be represented by drawing the vertices along a horizontal line and drawing the edges as semicircles above said line. In this setting, the length of an edge is defined as the absolute value of the difference between the positions of its two vertices in the arrangement, and the cost of an arrangement as the sum of all edge lengths. Here we study two variants of the Maximum Linear Arrangement problem (MaxLA), which consists of finding an arrangement that maximizes the cost. In the planar variant for free trees, vertices have to be arranged in such a way that there are no edge crossings. In the projective variant for rooted trees, arrangements have to be planar and the root of the tree cannot be covered by any edge. In this paper we present algorithms that are linear in time and space to solve planar and projective MaxLA for trees. We also prove several properties of maximum projective and planar arrangements, and show that caterpillar trees maximize planar MaxLA over all trees of a fixed size thereby generalizing a previous extremal result on trees.
In complex large-scale systems such as climate, important effects are caused by a combination of confounding processes that are not fully observable. The identification of sources from observations of system state is vital for attribution and prediction, which inform critical policy decisions. The difficulty of these types of inverse problems lies in the inability to isolate sources and the cost of simulating computational models. Surrogate models may enable the many-query algorithms required for source identification, but data challenges arise from high dimensionality of the state and source, limited ensembles of costly model simulations to train a surrogate model, and few and potentially noisy state observations for inversion due to measurement limitations. The influence of auxiliary processes adds an additional layer of uncertainty that further confounds source identification. We introduce a framework based on (1) calibrating deep neural network surrogates to the flow maps provided by an ensemble of simulations obtained by varying sources, and (2) using these surrogates in a Bayesian framework to identify sources from observations via optimization. Focusing on an atmospheric dispersion exemplar, we find that the expressive and computationally efficient nature of the deep neural network operator surrogates in appropriately reduced dimension allows for source identification with uncertainty quantification using limited data. Introducing a variable wind field as an auxiliary process, we find that a Bayesian approximation error approach is essential for reliable source inversion when uncertainty due to wind stresses the algorithm.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.