We study the computational complexity of multi-stage robust optimization problems. Such problems are formulated with alternating min/max quantifiers and therefore naturally fall into a higher stage of the polynomial hierarchy. Despite this, almost no hardness results with respect to the polynomial hierarchy are known. In this work, we examine the hardness of robust two-stage adjustable and robust recoverable optimization with budgeted uncertainty sets. Our main technical contribution is the introduction of a technique tailored to prove $\Sigma^p_3$-hardness of such problems. We highlight a difference between continuous and discrete budgeted uncertainty: In the discrete case, indeed a wide range of problems becomes complete for the third stage of the polynomial hierarchy; in particular, this applies to the TSP, independent set, and vertex cover problems. However, in the continuous case this does not happen and problems remain in the first stage of the hierarchy. Finally, if we allow the uncertainty to not only affect the objective, but also multiple constraints, then this distinction disappears and even in the continuous case we encounter hardness for the third stage of the hierarchy. This shows that even robust problems which are already NP-complete can still exhibit a significant computational difference between column-wise and row-wise uncertainty.
For large-scale cyber-physical systems, the collaboration of spatially distributed sensors is often needed to perform the state estimation process. Privacy concerns naturally arise from disclosing sensitive measurement signals to a cloud estimator that predicts the system state. To solve this issue, we propose a differentially private set-based estimation protocol that preserves the privacy of the measurement signals. Compared to existing research, our approach achieves less privacy loss and utility loss using a numerically optimized truncated noise distribution. The proposed estimator is perturbed by weaker noise than the analytical approaches in the literature to guarantee the same level of privacy, therefore improving the estimation utility. Numerical and comparison experiments with truncated Laplace noise are presented to support our approach. Zonotopes, a less conservative form of set representation, are used to represent estimation sets, giving set operations a computational advantage. The privacy-preserving noise anonymizes the centers of these estimated zonotopes, concealing the precise positions of the estimated zonotopes.
Inverse problems are in many cases solved with optimization techniques. When the underlying model is linear, first-order gradient methods are usually sufficient. With nonlinear models, due to nonconvexity, one must often resort to second-order methods that are computationally more expensive. In this work we aim to approximate a nonlinear model with a linear one and correct the resulting approximation error. We develop a sequential method that iteratively solves a linear inverse problem and updates the approximation error by evaluating it at the new solution. This treatment convexifies the problem and allows us to benefit from established convex optimization methods. We separately consider cases where the approximation is fixed over iterations and where the approximation is adaptive. In the fixed case we show theoretically under what assumptions the sequence converges. In the adaptive case, particularly considering the special case of approximation by first-order Taylor expansion, we show that with certain assumptions the sequence converges to a critical point of the original nonconvex functional. Furthermore, we show that with quadratic objective functions the sequence corresponds to the Gauss-Newton method. Finally, we showcase numerical results superior to the conventional model correction method. We also show, that a fixed approximation can provide competitive results with considerable computational speed-up.
Many problems in robotics, such as estimating the state from noisy sensor data or aligning two LiDAR point clouds, can be posed and solved as least-squares problems. Unfortunately, vanilla nonminimal solvers for least-squares problems are notoriously sensitive to outliers. As such, various robust loss functions have been proposed to reduce the sensitivity to outliers. Examples of loss functions include pseudo-Huber, Cauchy, and Geman-McClure. Recently, these loss functions have been generalized into a single loss function that enables the best loss function to be found adaptively based on the distribution of the residuals. However, even with the generalized robust loss function, most nonminimal solvers can only be solved locally given a prior state estimate due to the nonconvexity of the problem. The first contribution of this paper is to combine graduated nonconvexity (GNC) with the generalized robust loss function to solve least-squares problems without a prior state estimate and without the need to specify a loss function. Moreover, existing loss functions, including the generalized loss function, are based on Gaussian-like distribution. However, residuals are often defined as the squared norm of a multivariate error and distributed in a Chi-like fashion. The second contribution of this paper is to apply a norm-aware adaptive robust loss function within a GNC framework. This leads to additional robustness when compared with state-of-the-art methods. Simulations and experiments demonstrate that the proposed approach is more robust and yields faster convergence times compared to other GNC formulations.
We investigate the difficulty of finding economically efficient solutions to coordination problems on graphs. Our work focuses on two forms of coordination problem: pure-coordination games and anti-coordination games. We consider three objectives in the context of simple binary-action polymatrix games: (i) maximizing welfare, (ii) maximizing potential, and (iii) finding a welfare-maximizing Nash equilibrium. We introduce an intermediate, new graph-partition problem, termed Maximum Weighted Digraph Partition, which is of independent interest, and we provide a complexity dichotomy for it. This dichotomy, among other results, provides as a corollary a dichotomy for Objective (i) for general binary-action polymatrix games. In addition, it reveals that the complexity of achieving these objectives varies depending on the form of the coordination problem. Specifically, Objectives (i) and (ii) can be efficiently solved in pure-coordination games, but are NP-hard in anti-coordination games. Finally, we show that objective (iii) is NP-hard even for simple non-trivial pure-coordination games.
Topological signal processing (TSP) over simplicial complexes typically assumes observations associated with the simplicial complexes are real scalars. In this paper, we develop TSP theories for the case where observations belong to abelian groups more general than real numbers, including function spaces that are commonly used to represent time-varying signals. Our approach generalizes the Hodge decomposition and allows for signal processing tasks to be performed on these more complex observations. We propose a unified and flexible framework for TSP that expands its applicability to a wider range of signal processing applications. Numerical results demonstrate the effectiveness of this approach and provide a foundation for future research in this area.
Deep neural networks (DNNs) are increasingly being deployed to perform safety-critical tasks. The opacity of DNNs, which prevents humans from reasoning about them, presents new safety and security challenges. To address these challenges, the verification community has begun developing techniques for rigorously analyzing DNNs, with numerous verification algorithms proposed in recent years. While a significant amount of work has gone into developing these verification algorithms, little work has been devoted to rigorously studying the computability and complexity of the underlying theoretical problems. Here, we seek to contribute to the bridging of this gap. We focus on two kinds of DNNs: those that employ piecewise-linear activation functions (e.g., ReLU), and those that employ piecewise-smooth activation functions (e.g., Sigmoids). We prove the two following theorems: 1) The decidability of verifying DNNs with piecewise-smooth activation functions is equivalent to a well-known, open problem formulated by Tarski; and 2) The DNN verification problem for any quantifier-free linear arithmetic specification can be reduced to the DNN reachability problem, whose approximation is NP-complete. These results answer two fundamental questions about the computability and complexity of DNN verification, and the ways it is affected by the network's activation functions and error tolerance; and could help guide future efforts in developing DNN verification tools.
Several precise and computationally efficient results for pointing errors models in two asymptotic cases are derived in this paper. The normalized mean-squared error (NMSE) performance metric is employed to quantify the accuracy of different models. For the case that the beam width is relatively larger than the detection aperture, we propose the three kinds of models that have the form of $c_1\exp(-c_2r^2) $.It is shown that the modified intensity uniform model not only achieves a comparable accuracy with the best linearized model, but also is expressed in an elegant mathematical way when compared to the traditional Farid model. This indicates that the modified intensity uniform model is preferable in the performance analysis of free space optical (FSO) systems considering the effects of the pointing errors. By analogizing the beam spot with a point in the case that beam width is smaller than the detection aperture, the solution of the pointing errors model is transformed to a smooth function approximation problem, and we find that a more accurate approximation can be achieved by the proposed point approximation model when compared to the model that is induced from the Vasylyev model in some scenarios.
This paper combines modern numerical computation with theoretical results to improve our understanding of the growth factor problem for Gaussian elimination. On the computational side we obtain lower bounds for the maximum growth for complete pivoting for $n=1:75$ and $n=100$ using the Julia JuMP optimization package. At $n=100$ we obtain a growth factor bigger than $3n$. The numerical evidence suggests that the maximum growth factor is bigger than $n$ if and only if $n \ge 11$. We also present a number of theoretical results. We show that the maximum growth factor over matrices with entries restricted to a subset of the reals is nearly equal to the maximum growth factor over all real matrices. We also show that the growth factors under floating point arithmetic and exact arithmetic are nearly identical. Finally, through numerical search, and stability and extrapolation results, we provide improved lower bounds for the maximum growth factor. Specifically, we find that the largest growth factor is bigger than $1.0045n$, and the lim sup of the ratio with $n$ is greater than or equal to $3.317$. In contrast to the old conjecture that growth might never be bigger than $n$, it seems likely that the maximum growth divided by $n$ goes to infinity as $n \rightarrow \infty$.
Approaches for stochastic nonlinear model predictive control (SNMPC) typically make restrictive assumptions about the system dynamics and rely on approximations to characterize the evolution of the underlying uncertainty distributions. For this reason, they are often unable to capture more complex distributions (e.g., non-Gaussian or multi-modal) and cannot provide accurate guarantees of performance. In this paper, we present a sampling-based SNMPC approach that leverages recently derived sample complexity bounds to certify the performance of a feedback policy without making assumptions about the system dynamics or underlying uncertainty distributions. By parallelizing our approach, we are able to demonstrate real-time receding-horizon SNMPC with statistical safety guarantees in simulation and on hardware using a 1/10th scale rally car and a 24-inch wingspan fixed-wing UAV.
Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.