亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A fundamental theme in automata theory is regular languages of words and trees, and their many equivalent definitions. Salvati has proposed a generalization to regular languages of simply typed $\lambda$-terms, defined using denotational semantics in finite sets. We provide here some evidence for its robustness. First, we give an equivalent syntactic characterization that naturally extends the seminal work of Hillebrand and Kanellakis connecting regular languages of words and syntactic $\lambda$-definability. Second, we exhibit a class of categorical models of the simply typed $\lambda$-calculus, which we call finitely pointable, and we show that, when used in Salvati's definition, they all recognize exactly the same class of languages of $\lambda$-terms as the category of finite sets does. The proofs of these two results rely on logical relations and can be seen as instances of a more general construction of a categorical nature, inspired by previous categorical accounts of logical relations using the gluing construction.

相關內容

A new nonparametric estimator for Toeplitz covariance matrices is proposed. This estimator is based on a data transformation that translates the problem of Toeplitz covariance matrix estimation to the problem of mean estimation in an approximate Gaussian regression. The resulting Toeplitz covariance matrix estimator is positive definite by construction, fully data-driven and computationally very fast. Moreover, this estimator is shown to be minimax optimal under the spectral norm for a large class of Toeplitz matrices. These results are readily extended to estimation of inverses of Toeplitz covariance matrices. Also, an alternative version of the Whittle likelihood for the spectral density based on the Discrete Cosine Transform (DCT) is proposed. The method is implemented in the R package vstdct that accompanies the paper.

The homogenization of elliptic divergence-type fourth-order operators with periodic coefficients is studied in a (periodic) domain. The aim is to find an operator with constant coefficients and represent the equation through a perturbation around this operator. The resolvent is found as $L^2 \to L^2$ operator using the Neumann series for the periodic fundamental solution of biharmonic operator. Results are based on some auxiliary Lemmas suggested by Bensoussan in 1986, Zhikov in 1991, Yu. Grabovsky and G. Milton in 1998, Pastukhova in 2016. Operators of the type considered in the paper appear in the study of the elastic properties of thin plates. The choice of the operator with constant coefficients is discussed separately and chosen in an optimal way w.r.t. the spectral radius and convergence of the Neumann series and uses the known bounds for ''homogenized'' coefficients. Similar ideas are usually applied for the construction of preconditioners for iterative solvers for finite dimensional problems resulting from discretized PDEs. The method presented is similar to Cholesky factorization transferred to elliptic operators (as in references mentioned above). Furthermore, the method can be applied to non-linear problems.

Quasiperiodic systems, related to irrational numbers, are space-filling structures without decay nor translation invariance. How to accurately recover these systems, especially for non-smooth cases, presents a big challenge in numerical computation. In this paper, we propose a new algorithm, finite points recovery (FPR) method, which is available for both smooth and non-smooth cases, to address this challenge. The FPR method first establishes a homomorphism between the lower-dimensional definition domain of the quasiperiodic function and the higher-dimensional torus, then recovers the global quasiperiodic system by employing interpolation technique with finite points in the definition domain without dimensional lifting. Furthermore, we develop accurate and efficient strategies of selecting finite points according to the arithmetic properties of irrational numbers. The corresponding mathematical theory, convergence analysis, and computational complexity analysis on choosing finite points are presented. Numerical experiments demonstrate the effectiveness and superiority of FPR approach in recovering both smooth quasiperiodic functions and piecewise constant Fibonacci quasicrystals. While existing spectral methods encounter difficulties in accurately recovering non-smooth quasiperiodic functions.

We introduce two iterative methods, GPBiLQ and GPQMR, for solving unsymmetric partitioned linear systems. The basic mechanism underlying GPBiLQ and GPQMR is a novel simultaneous tridiagonalization via biorthogonality that allows for short-recurrence iterative schemes. Similar to the biconjugate gradient method, it is possible to develop another method, GPBiCG, whose iterate (if it exists) can be obtained inexpensively from the GPBiLQ iterate. Whereas the iterate of GPBiCG may not exist, the iterates of GPBiLQ and GPQMR are always well defined as long as the biorthogonal tridiagonal reduction process does not break down. We discuss connections between the proposed methods and some existing methods, and give numerical experiments to illustrate the performance of the proposed methods.

We propose a finite difference scheme for the numerical solution of a two-dimensional singularly perturbed convection-diffusion partial differential equation whose solution features interacting boundary and interior layers, the latter due to discontinuities in source term. The problem is posed on the unit square. The second derivative is multiplied by a singular perturbation parameter, $\epsilon$, while the nature of the first derivative term is such that flow is aligned with a boundary. These two facts mean that solutions tend to exhibit layers of both exponential and characteristic type. We solve the problem using a finite difference method, specially adapted to the discontinuities, and applied on a piecewise-uniform (Shishkin). We prove that that the computed solution converges to the true one at a rate that is independent of the perturbation parameter, and is nearly first-order. We present numerical results that verify that these results are sharp.

We consider the completely positive discretizations of fractional ordinary differential equations (FODEs) on nonuniform meshes. Making use of the resolvents for nonuniform meshes, we first establish comparison principles for the discretizations. Then we prove some discrete Gr\"onwall inequalities using the comparison principles and careful analysis of the solutions to the time continuous FODEs. Our results do not have any restrictions on the step size ratio. The Gr\"onwall inequalities for dissipative equations can be used to obtain the uniform-in-time error control and decay estimates of the numerical solutions. The Gr\"onwall inequalities are then applied to subdiffusion problems and the time fractional Allen-Cahn equations for illustration.

Dynamical models described by ordinary differential equations (ODEs) are a fundamental tool in the sciences and engineering. Exact reduction aims at producing a lower-dimensional model in which each macro-variable can be directly related to the original variables, and it is thus a natural step towards the model's formal analysis and mechanistic understanding. We present an algorithm which, given a polynomial ODE model, computes a longest possible chain of exact linear reductions of the model such that each reduction refines the previous one, thus giving a user control of the level of detail preserved by the reduction. This significantly generalizes over the existing approaches which compute only the reduction of the lowest dimension subject to an approach-specific constraint. The algorithm reduces finding exact linear reductions to a question about representations of finite-dimensional algebras. We provide an implementation of the algorithm, demonstrate its performance on a set of benchmarks, and illustrate the applicability via case studies. Our implementation is freely available at //github.com/x3042/ExactODEReduction.jl

In many jurisdictions, forensic evidence is presented in the form of categorical statements by forensic experts. Several large-scale performance studies have been performed that report error rates to elucidate the uncertainty associated with such categorical statements. There is growing scientific consensus that the likelihood ratio (LR) framework is the logically correct form of presentation for forensic evidence evaluation. Yet, results from the large-scale performance studies have not been cast in this framework. Here, I show how to straightforwardly calculate an LR for any given categorical statement using data from the performance studies. This number quantifies how much more we should believe the hypothesis of same source vs different source, when provided a particular expert witness statement. LRs are reported for categorical statements resulting from the analysis of latent fingerprints, bloodstain patterns, handwriting, footwear and firearms. The highest LR found for statements of identification was 376 (fingerprints), the lowest found for statements of exclusion was 1/28 (handwriting). The LRs found may be more insightful for those used to this framework than the various error rates reported previously. An additional advantage of using the LR in this way is the relative simplicity; there are no decisions necessary on what error rate to focus on or how to handle inconclusive statements. The values found are closer to 1 than many would have expected. One possible explanation for this mismatch is that we undervalue numerical LRs. Finally, a note of caution: the LR values reported here come from a simple calculation that does not do justice to the nuances of the large-scale studies and their differences to casework, and should be treated as ball-park figures rather than definitive statements on the evidential value of whole forensic scientific fields.

A well-balanced second-order finite volume scheme is proposed and analyzed for a 2 X 2 system of non-linear partial differential equations which describes the dynamics of growing sandpiles created by a vertical source on a flat, bounded rectangular table in multiple dimensions. To derive a second-order scheme, we combine a MUSCL type spatial reconstruction with strong stability preserving Runge-Kutta time stepping method. The resulting scheme is ensured to be well-balanced through a modified limiting approach that allows the scheme to reduce to well-balanced first-order scheme near the steady state while maintaining the second-order accuracy away from it. The well-balanced property of the scheme is proven analytically in one dimension and demonstrated numerically in two dimensions. Additionally, numerical experiments reveal that the second-order scheme reduces finite time oscillations, takes fewer time iterations for achieving the steady state and gives sharper resolutions of the physical structure of the sandpile, as compared to the existing first-order schemes of the literature.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

北京阿比特科技有限公司