亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Understanding the properties of the stochastic phase field models is crucial to model processes in several practical applications, such as soft matters and phase separation in random environments. To describe such random evolution, this work proposes and studies two mathematical models and their numerical approximations for parabolic stochastic partial differential equation (SPDE) with a logarithmic Flory--Huggins energy potential. These multiscale models are built based on a regularized energy technique and thus avoid possible singularities of coefficients. According to the large deviation principle, we show that the limit of the proposed models with small noise naturally recovers the classical dynamics in deterministic case. Moreover, when the driving noise is multiplicative, the Stampacchia maximum principle holds which indicates the robustness of the proposed model. One of the main advantages of the proposed models is that they can admit the energy evolution law and asymptotically preserve the Stampacchia maximum bound of the original problem. To numerically capture these asymptotic behaviors, we investigate the semi-implicit discretizations for regularized logrithmic SPDEs. Several numerical results are presented to verify our theoretical findings.

相關內容

We present new results on average causal effects in settings with unmeasured exposure-outcome confounding. Our results are motivated by a class of estimands, e.g., frequently of interest in medicine and public health, that are currently not targeted by standard approaches for average causal effects. We recognize these estimands as queries about the average causal effect of an intervening variable. We anchor our introduction of these estimands in an investigation of the role of chronic pain and opioid prescription patterns in the opioid epidemic, and illustrate how conventional approaches will lead unreplicable estimates with ambiguous policy implications. We argue that our altenative effects are replicable and have clear policy implications, and furthermore are non-parametrically identified by the classical frontdoor formula. As an independent contribution, we derive a new semiparametric efficient estimator of the frontdoor formula with a uniform sample boundedness guarantee. This property is unique among previously-described estimators in its class, and we demonstrate superior performance in finite-sample settings. Theoretical results are applied with data from the National Health and Nutrition Examination Survey.

Integer linear programming models a wide range of practical combinatorial optimization problems and has significant impacts in industry and management sectors. This work develops the first standalone local search solver for general integer linear programming validated on a large heterogeneous problem dataset. We propose a local search framework that switches in three modes, namely Search, Improve, and Restore modes, and design tailored operators adapted to different modes, thus improve the quality of the current solution according to different situations. For the Search and Restore modes, we propose an operator named tight move, which adaptively modifies variables' values trying to make some constraint tight. For the Improve mode, an efficient operator lift move is proposed to improve the quality of the objective function while maintaining feasibility. Putting these together, we develop a local search solver for integer linear programming called Local-ILP. Experiments conducted on the MIPLIB dataset show the effectiveness of our solver in solving large-scale hard integer linear programming problems within a reasonably short time. Local-ILP is competitive and complementary to the state-of-the-art commercial solver Gurobi and significantly outperforms the state-of-the-art non-commercial solver SCIP. Moreover, our solver establishes new records for 6 MIPLIB open instances.

In this paper, we propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs). From a perspective of physical simulation, we redefine the problem of approximating the gradient flow utilizing optimal transport (i.e. Wasserstein) metric. In EBMs, the learning process of stepwise sampling and estimating data distribution performs the functional gradient of minimizing the global relative entropy between the current and target real distribution, which can be treated as dynamic particles moving from disorder to target manifold. Previous learning schemes mainly minimize the entropy concerning the consecutive time KL divergence in each learning step. However, they are prone to being stuck in the local KL divergence by projecting non-smooth information within smooth manifold, which is against the optimal transport principle. To solve this problem, we derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation. Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities. We also derive this near-proximal scheme and provide its numerical computation equations. Our extensive experiments demonstrate the practical superiority and potentials of our proposed scheme on fitting complex distributions and generating high-quality, high-dimensional data with neural EBMs.

Assessing causal effects in the presence of unmeasured confounding is a challenging problem. Although auxiliary variables, such as instrumental variables, are commonly used to identify causal effects, they are often unavailable in practice due to stringent and untestable conditions. To address this issue, previous researches have utilized linear structural equation models to show that the causal effect can be identifiable when noise variables of the treatment and outcome are both non-Gaussian. In this paper, we investigate the problem of identifying the causal effect using auxiliary covariates and non-Gaussianity from the treatment. Our key idea is to characterize the impact of unmeasured confounders using an observed covariate, assuming they are all Gaussian. The auxiliary covariate can be an invalid instrument or an invalid proxy variable. We demonstrate that the causal effect can be identified using this measured covariate, even when the only source of non-Gaussianity comes from the treatment. We then extend the identification results to the multi-treatment setting and provide sufficient conditions for identification. Based on our identification results, we propose a simple and efficient procedure for calculating causal effects and show the $\sqrt{n}$-consistency of the proposed estimator. Finally, we evaluate the performance of our estimator through simulation studies and an application.

Chernoff approximations are a flexible and powerful tool of functional analysis, which can be used, in particular, to find numerically approximate solutions of some differential equations with variable coefficients. For many classes of equations such approximations have already been constructed since pioneering papers of Prof. O.G.Somlyanov in 2000, however, the speed of their convergence to the exact solution has not been properly studied. We select the heat equation (because its exact solutions are already known) as a simple yet informative model example for the study of the rate of convergence of Chernoff approximations. Examples illustrating the rate of convergence of Chernoff approximations to the solution of the Cauchy problem for the heat equation are constructed in the paper. Numerically we show that for initial conditions that are smooth enough the order of approximation is equal to the order of Chernoff tangency of the Chernoff function used. We also consider not smooth enough initial conditions and show how H\"older class of initial condition is related to the rate of convergence. This method of study in the future can be applied to general second order parabolic equation with variable coefficients by a slight modification of our Python 3 code. This arXiv version of the text is a supplementary material for our journal article. Here we include all the written text from the article and additionally all illustrations (Appendix A) and full text of the Python 3 code (Appendix B).

We consider sequential state and parameter learning in state-space models with intractable state transition and observation processes. By exploiting low-rank tensor-train (TT) decompositions, we propose new sequential learning methods for joint parameter and state estimation under the Bayesian framework. Our key innovation is the introduction of scalable function approximation tools such as TT for recursively learning the sequentially updated posterior distributions. The function approximation perspective of our methods offers tractable error analysis and potentially alleviates the particle degeneracy faced by many particle-based methods. In addition to the new insights into algorithmic design, our methods complement conventional particle-based methods. Our TT-based approximations naturally define conditional Knothe--Rosenblatt (KR) rearrangements that lead to filtering, smoothing and path estimation accompanying our sequential learning algorithms, which open the door to removing potential approximation bias. We also explore several preconditioning techniques based on either linear or nonlinear KR rearrangements to enhance the approximation power of TT for practical problems. We demonstrate the efficacy and efficiency of our proposed methods on several state-space models, in which our methods achieve state-of-the-art estimation accuracy and computational performance.

In this paper, we propose, analyze and implement efficient time parallel methods for the Cahn-Hilliard (CH) equation. It is of great importance to develop efficient numerical methods for the CH equation, given the range of applicability of the CH equation has. The CH equation generally needs to be simulated for a very long time to get the solution of phase coarsening stage. Therefore it is desirable to accelerate the computation using parallel method in time. We present linear and nonlinear Parareal methods for the CH equation depending on the choice of fine approximation. We illustrate our results by numerical experiments.

In this paper, we design, analyze and implement efficient time parallel method for a class of fourth order time-dependent partial differential equations (PDEs), namely biharmonic heat equation, linearized Cahn-Hilliard (CH) equation and the nonlinear CH equation. We use diagonalization technique on all-at-once system to develop efficient iterative time parallel methods for investigating the solution behaviour of said equations. We present the convergence analysis of Parallel-in-Time (PinT) algorithms. We verify our findings by presenting numerical results.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司