Large Language Models (LLMs) have shown impressive capabilities in various applications, but they still face various inconsistency issues. Existing works primarily focus on the inconsistency issues within a single LLM, while we complementarily explore the inter-consistency among multiple LLMs for collaboration. To examine whether LLMs can collaborate effectively to achieve a consensus for a shared goal, we focus on commonsense reasoning, and introduce a formal debate framework (FORD) to conduct a three-stage debate among LLMs with real-world scenarios alignment: fair debate, mismatched debate, and roundtable debate. Through extensive experiments on various datasets, LLMs can effectively collaborate to reach a consensus despite noticeable inter-inconsistencies, but imbalances in their abilities can lead to domination by superior LLMs. Leveraging a more advanced LLM like GPT-4 as an authoritative judge can boost collaboration performance. Our work contributes to understanding the inter-consistency among LLMs and lays the foundation for developing future collaboration methods. Codes and data are available at //github.com/Waste-Wood/FORD
Large language models (LLMs) have demonstrated impressive reasoning capabilities, yet there is ongoing debate about these abilities and the potential data contamination problem recently. This paper aims to evaluate the reasoning capacities of LLMs, specifically in solving recent competition-level programming problems in Codeforces, which are expert-crafted and unique, requiring deep understanding and robust reasoning skills. We first provide a comprehensive evaluation of GPT-4's peiceived zero-shot performance on this task, considering various aspects such as problems' release time, difficulties, and types of errors encountered. Surprisingly, the peiceived performance of GPT-4 has experienced a cliff like decline in problems after September 2021 consistently across all the difficulties and types of problems, which shows the potential data contamination, as well as the challenges for any existing LLM to solve unseen complex reasoning problems. We further explore various approaches such as fine-tuning, Chain-of-Thought prompting and problem description simplification, unfortunately none of them is able to consistently mitigate the challenges. Through our work, we emphasis the importance of this excellent data source for assessing the genuine reasoning capabilities of LLMs, and foster the development of LLMs with stronger reasoning abilities and better generalization in the future.
While Large Language Models (LLMs) display versatile functionality, they continue to generate harmful, biased, and toxic content, as demonstrated by the prevalence of human-designed jailbreaks. In this work, we present Tree of Attacks with Pruning (TAP), an automated method for generating jailbreaks that only requires black-box access to the target LLM. TAP utilizes an LLM to iteratively refine candidate (attack) prompts using tree-of-thoughts reasoning until one of the generated prompts jailbreaks the target. Crucially, before sending prompts to the target, TAP assesses them and prunes the ones unlikely to result in jailbreaks. Using tree-of-thought reasoning allows TAP to navigate a large search space of prompts and pruning reduces the total number of queries sent to the target. In empirical evaluations, we observe that TAP generates prompts that jailbreak state-of-the-art LLMs (including GPT4 and GPT4-Turbo) for more than 80% of the prompts using only a small number of queries. This significantly improves upon the previous state-of-the-art black-box method for generating jailbreaks.
Electronically tunable metasurfaces, or Intelligent Reflective Surfaces (IRSs), are a popular technology for achieving high spectral efficiency in modern wireless systems by shaping channels using a multitude of tunable passive reflective elements. Capitalizing on key practical limitations of IRS-aided beamforming pertaining to system modeling and channel sensing/estimation, we propose a novel, fully data-driven Zeroth-order Stochastic Gradient Ascent (ZoSGA) algorithm for general two-stage (i.e., short/long-term), fully-passive IRS-aided stochastic utility maximization. ZoSGA learns long-term optimal IRS beamformers jointly with short-term optimal precoders (e.g., WMMSE-based) via minimal zeroth-order reinforcement and in a strictly model-free fashion, relying solely on the \textit{effective} compound channels observed at the terminals, while being independent of channel models or network/IRS configurations. Another remarkable feature of ZoSGA is being amenable to analysis, enabling us to establish a state-of-the-art (SOTA) convergence rate of the order of $\boldsymbol{O}(\sqrt{S}\epsilon^{-4})$ under minimal assumptions, where $S$ is the total number of IRS elements, and $\epsilon$ is a desired suboptimality target. Our numerical results on a standard MISO downlink IRS-aided sumrate maximization setting establish SOTA empirical behavior of ZoSGA as well, consistently and substantially outperforming standard fully model-based baselines. Lastly, we demonstrate that ZoSGA can in fact operate \textit{in the field}, by directly optimizing the capacitances of a varactor-based electromagnetic IRS model (unknown to ZoSGA) on a multiple user/IRS, compute-heavy network setting, with essentially no computational overheads or performance degradation.
Dynamic Bayesian Networks (DBNs), renowned for their interpretability, have become increasingly vital in representing complex stochastic processes in various domains such as gene expression analysis, healthcare, and traffic prediction. Structure learning of DBNs from data is challenging, particularly for datasets with thousands of variables. Most current algorithms for DBN structure learning are adaptations from those used in static Bayesian Networks (BNs), and are typically focused on small-scale problems. In order to solve large-scale problems while taking full advantage of existing algorithms, this paper introduces a novel divide-and-conquer strategy, originally developed for static BNs, and adapts it for large-scale DBN structure learning. In this work, we specifically concentrate on 2 Time-sliced Bayesian Networks (2-TBNs), a special class of DBNs. Furthermore, we leverage the prior knowledge of 2-TBNs to enhance the performance of the strategy we introduce. Our approach significantly improves the scalability and accuracy of 2-TBN structure learning. Experimental results demonstrate the effectiveness of our method, showing substantial improvements over existing algorithms in both computational efficiency and structure learning accuracy. On problem instances with more than 1,000 variables, our approach improves two accuracy metrics by 74.45% and 110.94% on average , respectively, while reducing runtime by 93.65% on average.
Generative Language Models (GLMs) have shown impressive performance in tasks such as text generation, understanding, and reasoning. However, the large model size poses challenges for practical deployment. To solve this problem, Quantization-Aware Training (QAT) has become increasingly popular. However, current QAT methods for generative models have resulted in a noticeable loss of accuracy. To counteract this issue, we propose a novel knowledge distillation method specifically designed for GLMs. Our method, called token-scaled logit distillation, prevents overfitting and provides superior learning from the teacher model and ground truth. This research marks the first evaluation of ternary weight quantization-aware training of large-scale GLMs with less than 1.0 degradation in perplexity and achieves enhanced accuracy in tasks like common-sense QA and arithmetic reasoning as well as natural language understanding. Our code is available at //github.com/aiha-lab/TSLD.
As discussions around 6G begin, it is important to carefully quantify the spectral efficiency gains actually realized by deployed 5G networks as compared to 4G through various enhancements such as higher modulation, beamforming, and MIMO. This will inform the design of future cellular systems, especially in the mid-bands, which provide a good balance between bandwidth and propagation. Similar to 4G, 5G also utilizes low-band (<1 GHz) and mid-band spectrum (1 to 6 GHz), and hence comparing the performance of 4G and 5G in these bands will provide insights into how further improvements can be attained. In this work, we address a crucial question: is the performance boost in 5G compared to 4G primarily a result of increased bandwidth, or do the other enhancements play significant roles, and if so, under what circumstances? Hence, we conduct city-wide measurements of 4G and 5G cellular networks deployed in low- and mid-bands in Chicago and Minneapolis, and carefully quantify the contributions of different aspects of 5G advancements to its improved throughput performance. Our analyses show that (i) compared to 4G, the throughput improvement in 5G today is mainly influenced by the wider channel bandwidth, both from single channels and channel aggregation, (ii) in addition to wider channels, improved 5G throughput requires better signal conditions, which can be delivered by denser deployment and/or use of beamforming in mid-bands, (iii) the channel rank in real-world environments rarely supports the full 4 layers of 4x4 MIMO and (iv) advanced features such as MU-MIMO and higher order modulation such as 1024-QAM have yet to be widely deployed. These observations and conclusions lead one to consider designing the next generation of cellular systems to have wider channels, perhaps with improved channel aggregation, dense deployment with more beams.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.