Precise glucose level monitoring is critical for people with diabetes to avoid serious complications. While there are several methods for continuous glucose level monitoring, research on maintenance devices is limited. To mitigate the gap, we provide a novel neural control system for continuous glucose monitoring and management that uses differential predictive control. Our approach, led by a sophisticated neural policy and differentiable modeling, constantly adjusts insulin supply in real-time, thereby improving glucose level optimization in the body. This end-to-end method maximizes efficiency, providing personalized care and improved health outcomes, as confirmed by empirical evidence.
Human motion prediction and trajectory forecasting are essential in human motion analysis. Nowadays, sensors can be seamlessly integrated into clothing using cutting-edge electronic textile (e-textile) technology, allowing long-term recording of human movements outside the laboratory. Motivated by the recent findings that clothing-attached sensors can achieve higher activity recognition accuracy than body-attached sensors. This work investigates the performance of human motion prediction using clothing-attached sensors compared with body-attached sensors. It reports experiments in which statistical models learnt from the movement of loose clothing are used to predict motion patterns of the body of robotically simulated and real human behaviours. Counterintuitively, the results show that fabric-attached sensors can have better motion prediction performance than rigid-attached sensors. Specifically, The fabric-attached sensor can improve the accuracy up to 40% and requires up to 80% less duration of the past trajectory to achieve high prediction accuracy (i.e., 95%) compared to the rigid-attached sensor.
Matching patients to clinical trials is a key unsolved challenge in bringing new drugs to market. Today, identifying patients who meet a trial's eligibility criteria is highly manual, taking up to 1 hour per patient. Automated screening is challenging, however, as it requires understanding unstructured clinical text. Large language models (LLMs) offer a promising solution. In this work, we explore their application to trial matching. First, we design an LLM-based system which, given a patient's medical history as unstructured clinical text, evaluates whether that patient meets a set of inclusion criteria (also specified as free text). Our zero-shot system achieves state-of-the-art scores on the n2c2 2018 cohort selection benchmark. Second, we improve the data and cost efficiency of our method by identifying a prompting strategy which matches patients an order of magnitude faster and more cheaply than the status quo, and develop a two-stage retrieval pipeline that reduces the number of tokens processed by up to a third while retaining high performance. Third, we evaluate the interpretability of our system by having clinicians evaluate the natural language justifications generated by the LLM for each eligibility decision, and show that it can output coherent explanations for 97% of its correct decisions and 75% of its incorrect ones. Our results establish the feasibility of using LLMs to accelerate clinical trial operations.
We study the Densest Subgraph (DSG) problem under the additional constraint of differential privacy. DSG is a fundamental theoretical question which plays a central role in graph analytics, and so privacy is a natural requirement. All known private algorithms for Densest Subgraph lose constant multiplicative factors, despite the existence of non-private exact algorithms. We show that, perhaps surprisingly, this loss is not necessary: in both the classic differential privacy model and the LEDP model (local edge differential privacy, introduced recently by Dhulipala et al. [FOCS 2022]), we give $(\epsilon, \delta)$-differentially private algorithms with no multiplicative loss whatsoever. In other words, the loss is \emph{purely additive}. Moreover, our additive losses match or improve the best-known previous additive loss (in any version of differential privacy) when $1/\delta$ is polynomial in $n$, and are almost tight: in the centralized setting, our additive loss is $O(\log n /\epsilon)$ while there is a known lower bound of $\Omega(\sqrt{\log n / \epsilon})$. We also give a number of extensions. First, we show how to extend our techniques to both the node-weighted and the directed versions of the problem. Second, we give a separate algorithm with pure differential privacy (as opposed to approximate DP) but with worse approximation bounds. And third, we give a new algorithm for privately computing the optimal density which implies a separation between the structural problem of privately computing the densest subgraph and the numeric problem of privately computing the density of the densest subgraph.
Mediation analysis is an important statistical tool in many research fields. Its aim is to investigate the mechanism along the causal pathway between an exposure and an outcome. The joint significance test is widely utilized as a prominent statistical approach for examining mediation effects in practical applications. Nevertheless, the limitation of this mediation testing method stems from its conservative Type I error, which reduces its statistical power and imposes certain constraints on its popularity and utility. The proposed solution to address this gap is the adjusted joint significance test for one mediator, a novel data-adaptive test for mediation effect that exhibits significant advancements compared to traditional joint significance test. The proposed method is designed to be user-friendly, eliminating the need for complicated procedures. We have derived explicit expressions for size and power, ensuring the theoretical validity of our approach. Furthermore, we extend the proposed adjusted joint significance tests for small-scale mediation hypotheses with family-wise error rate (FWER) control. Additionally, a novel adjusted Sobel-type approach is proposed for the estimation of confidence intervals for the mediation effects, demonstrating significant advancements over conventional Sobel's confidence intervals in terms of achieving desirable coverage probabilities. Our mediation testing and confidence intervals procedure is evaluated through comprehensive simulations, and compared with numerous existing approaches. Finally, we illustrate the usefulness of our method by analysing three real-world datasets with continuous, binary and time-to-event outcomes, respectively.
Entity Resolution (ER) is the problem of semi-automatically determining when two entities refer to the same underlying entity, with applications ranging from healthcare to e-commerce. Traditional ER solutions required considerable manual expertise, including domain-specific feature engineering, as well as identification and curation of training data. Recently released large language models (LLMs) provide an opportunity to make ER more seamless and domain-independent. However, it is also well known that LLMs can pose risks, and that the quality of their outputs can depend on how prompts are engineered. Unfortunately, a systematic experimental study on the effects of different prompting methods for addressing unsupervised ER, using LLMs like ChatGPT, has been lacking thus far. This paper aims to address this gap by conducting such a study. We consider some relatively simple and cost-efficient ER prompt engineering methods and apply them to ER on two real-world datasets widely used in the community. We use an extensive set of experimental results to show that an LLM like GPT3.5 is viable for high-performing unsupervised ER, and interestingly, that more complicated and detailed (and hence, expensive) prompting methods do not necessarily outperform simpler approaches. We provide brief discussions on qualitative and error analysis, including a study of the inter-consistency of different prompting methods to determine whether they yield stable outputs. Finally, we consider some limitations of LLMs when applied to ER.
The effectiveness of Voting Advice Applications (VAA) is often compromised by the length of their questionnaires. To address user fatigue and incomplete responses, some applications (such as the Swiss Smartvote) offer a condensed version of their questionnaire. However, these condensed versions can not ensure the accuracy of recommended parties or candidates, which we show to remain below 40%. To tackle these limitations, this work introduces an adaptive questionnaire approach that selects subsequent questions based on users' previous answers, aiming to enhance recommendation accuracy while reducing the number of questions posed to the voters. Our method uses an encoder and decoder module to predict missing values at any completion stage, leveraging a two-dimensional latent space reflective of political science's traditional methods for visualizing political orientations. Additionally, a selector module is proposed to determine the most informative subsequent question based on the voter's current position in the latent space and the remaining unanswered questions. We validated our approach using the Smartvote dataset from the Swiss Federal elections in 2019, testing various spatial models and selection methods to optimize the system's predictive accuracy. Our findings indicate that employing the IDEAL model both as encoder and decoder, combined with a PosteriorRMSE method for question selection, significantly improves the accuracy of recommendations, achieving 74% accuracy after asking the same number of questions as in the condensed version.
Credential theft and remote attacks are the most serious threats to authentication mechanisms. The crux of the problems is that we cannot control such behaviors. However, if a password does not contain user's secrets, stealing it is useless. If unauthorized inputs are disabled, the remote attacks can be invalidated. Thereby, credential secrets and input fields to our accounts can be controlled. Rather than encrypting passwords, we design a dual-password login-authentication mechanism, where a user-selected secret-free login password is converted into an untypable authentication password. Subsequently, the authenticatable functionality of the login password and the typable functionality of the authentication password may be disabled or invalidated so that the credential theft and remote attacks can be prevented. Thus, the usability-security trade-off and password reuse are resolved; local storage of authentication passwords is no longer necessary. More importantly, the password converter acts as an open hash algorithm, meaning that its intermediate elements can be used to define a truly unique identity of the login process to implement a novel dual-identity authentication. Particularly, the elements are concealed, inaccessible, and independent of any personal information, and therefore can be used to define a perfect unforgeable process identifier to identify and disable the unauthorized inputs.
Audio is one of the most used ways of human communication, but at the same time it can be easily misused to trick people. With the revolution of AI, the related technologies are now accessible to almost everyone, thus making it simple for the criminals to commit crimes and forgeries. In this work, we introduce a neural network method to develop a classifier that will blindly classify an input audio as real or mimicked; the word 'blindly' refers to the ability to detect mimicked audio without references or real sources. We propose a deep neural network following a sequential model that comprises three hidden layers, with alternating dense and drop out layers. The proposed model was trained on a set of 26 important features extracted from a large dataset of audios to get a classifier that was tested on the same set of features from different audios. The data was extracted from two raw datasets, especially composed for this work; an all English dataset and a mixed dataset (Arabic plus English) (The dataset can be provided, in raw form, by writing an email to the first author). For the purpose of comparison, the audios were also classified through human inspection with the subjects being the native speakers. The ensued results were interesting and exhibited formidable accuracy, as we were able to get at least 94% correct classification of the test cases, as against the 85% accuracy in the case of human observers.
Security vulnerability repair is a difficult task that is in dire need of automation. Two groups of techniques have shown promise: (1) large code language models (LLMs) that have been pre-trained on source code for tasks such as code completion, and (2) automated program repair (APR) techniques that use deep learning (DL) models to automatically fix software bugs. This paper is the first to study and compare Java vulnerability repair capabilities of LLMs and DL-based APR models. The contributions include that we (1) apply and evaluate five LLMs (Codex, CodeGen, CodeT5, PLBART and InCoder), four fine-tuned LLMs, and four DL-based APR techniques on two real-world Java vulnerability benchmarks (Vul4J and VJBench), (2) design code transformations to address the training and test data overlapping threat to Codex, (3) create a new Java vulnerability repair benchmark VJBench, and its transformed version VJBench-trans and (4) evaluate LLMs and APR techniques on the transformed vulnerabilities in VJBench-trans. Our findings include that (1) existing LLMs and APR models fix very few Java vulnerabilities. Codex fixes 10.2 (20.4%), the most number of vulnerabilities. (2) Fine-tuning with general APR data improves LLMs' vulnerability-fixing capabilities. (3) Our new VJBench reveals that LLMs and APR models fail to fix many Common Weakness Enumeration (CWE) types, such as CWE-325 Missing cryptographic step and CWE-444 HTTP request smuggling. (4) Codex still fixes 8.3 transformed vulnerabilities, outperforming all the other LLMs and APR models on transformed vulnerabilities. The results call for innovations to enhance automated Java vulnerability repair such as creating larger vulnerability repair training data, tuning LLMs with such data, and applying code simplification transformation to facilitate vulnerability repair.
Learning from demonstration is a proven technique to teach robots new skills. Data quality and quantity play a critical role in the performance of models trained using data collected from human demonstrations. In this paper we enhance an existing teleoperation data collection system with real-time haptic feedback to the human demonstrators; we observe improvements in the collected data throughput and in the performance of autonomous policies using models trained with the data. Our experimental testbed was a mobile manipulator robot that opened doors with latch handles. Evaluation of teleoperated data collection on eight real conference room doors found that adding haptic feedback improved data throughput by 6%. We additionally used the collected data to train six image-based deep imitation learning models, three with haptic feedback and three without it. These models were used to implement autonomous door-opening with the same type of robot used during data collection. A policy from a imitation learning model trained with data collected while the human demonstrators received haptic feedback performed on average 11% better than its counterpart trained with data collected without haptic feedback, indicating that haptic feedback provided during data collection resulted in improved autonomous policies.