Two new hybrid algorithms are proposed for large-scale linear discrete ill-posed problems in general-form regularization. They are both based on Krylov subspace inner-outer iterative algorithms. At each iteration, they need to solve a linear least squares problem. It is proved that the inner linear least squares problems, which are solved by LSQR, become better conditioned as k increases, so LSQR converges faster. We also prove how to choose the stopping tolerance for LSQR in order to guarantee that the computed solutions have the same accuracy with the exact best regularized solutions. Numerical experiments are given to show the effectiveness and efficiency of our new hybrid algorithms, and comparisons are made with the existing algorithm.
Regularization promotes well-posedness in solving an inverse problem with incomplete measurement data. The regularization term is typically designed based on a priori characterization of the unknown signal, such as sparsity or smoothness. The standard inhomogeneous regularization incorporates a spatially changing exponent $p$ of the standard $\ell_p$ norm-based regularization to recover a signal whose characteristic varies spatially. This study proposes a weighted inhomogeneous regularization that extends the standard inhomogeneous regularization through new exponent design and weighting using spatially varying weights. The new exponent design avoids misclassification when different characteristics stay close to each other. The weights handle another issue when the region of one characteristic is too small to be recovered effectively by the $\ell_p$ norm-based regularization even after identified correctly. A suite of numerical tests shows the efficacy of the proposed weighted inhomogeneous regularization, including synthetic image experiments and real sea ice recovery from its incomplete wave measurements.
Emotions are integral to human social interactions, with diverse responses elicited by various situational contexts. Particularly, the prevalence of negative emotional states has been correlated with negative outcomes for mental health, necessitating a comprehensive analysis of their occurrence and impact on individuals. In this paper, we introduce a novel dataset named DepressionEmo designed to detect 8 emotions associated with depression by 6037 examples of long Reddit user posts. This dataset was created through a majority vote over inputs by zero-shot classifications from pre-trained models and validating the quality by annotators and ChatGPT, exhibiting an acceptable level of interrater reliability between annotators. The correlation between emotions, their distribution over time, and linguistic analysis are conducted on DepressionEmo. Besides, we provide several text classification methods classified into two groups: machine learning methods such as SVM, XGBoost, and Light GBM; and deep learning methods such as BERT, GAN-BERT, and BART. The pretrained BART model, bart-base allows us to obtain the highest F1- Macro of 0.76, showing its outperformance compared to other methods evaluated in our analysis. Across all emotions, the highest F1-Macro value is achieved by suicide intent, indicating a certain value of our dataset in identifying emotions in individuals with depression symptoms through text analysis. The curated dataset is publicly available at: //github.com/abuBakarSiddiqurRahman/DepressionEmo.
The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the asymptotic spectral distribution of matrices $A_n$ arising from numerical discretizations of differential equations. Indeed, when the mesh fineness parameter $n$ tends to infinity, these matrices $A_n$ give rise to a sequence $\{A_n\}_n$, which often turns out to be a GLT sequence. In this paper, we extend the theory of GLT sequences in several directions: we show that every GLT sequence enjoys a normal form, we identify the spectral symbol of every GLT sequence formed by normal matrices, and we prove that, for every GLT sequence $\{A_n\}_n$ formed by normal matrices and every continuous function $f:\mathbb C\to\mathbb C$, the sequence $\{f(A_n)\}_n$ is again a GLT sequence whose spectral symbol is $f(\kappa)$, where $\kappa$ is the spectral symbol of $\{A_n\}_n$. In addition, using the theory of GLT sequences, we prove a spectral distribution result for perturbed normal matrices.
One tuple of probability vectors is more informative than another tuple when there exists a single stochastic matrix transforming the probability vectors of the first tuple into the probability vectors of the other. This is called matrix majorization. Solving an open problem raised by Mu et al, we show that if certain monotones - namely multivariate extensions of R\'{e}nyi divergences - are strictly ordered between the two tuples, then for sufficiently large $n$, there exists a stochastic matrix taking the $n$-fold Kronecker power of each input distribution to the $n$-fold Kronecker power of the corresponding output distribution. The same conditions, with non-strict ordering for the monotones, are also necessary for such matrix majorization in large samples. Our result also gives conditions for the existence of a sequence of statistical maps that asymptotically (with vanishing error) convert a single copy of each input distribution to the corresponding output distribution with the help of a catalyst that is returned unchanged. Allowing for transformation with arbitrarily small error, we find conditions that are both necessary and sufficient for such catalytic matrix majorization. We derive our results by building on a general algebraic theory of preordered semirings recently developed by one of the authors. This also allows us to recover various existing results on majorization in large samples and in the catalytic regime as well as relative majorization in a unified manner.
It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high-dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method for both diffusion and Helmholtz problems.
Chiral molecule assignation is crucial for asymmetric catalysis, functional materials, and the drug industry. The conventional approach requires theoretical calculations of electronic circular dichroism (ECD) spectra, which is time-consuming and costly. To speed up this process, we have incorporated deep learning techniques for the ECD prediction. We first set up a large-scale dataset of Chiral Molecular ECD spectra (CMCDS) with calculated ECD spectra. We further develop the ECDFormer model, a Transformer-based model to learn the chiral molecular representations and predict corresponding ECD spectra with improved efficiency and accuracy. Unlike other models for spectrum prediction, our ECDFormer creatively focused on peak properties rather than the whole spectrum sequence for prediction, inspired by the scenario of chiral molecule assignation. Specifically, ECDFormer predicts the peak properties, including number, position, and symbol, then renders the ECD spectra from these peak properties, which significantly outperforms other models in ECD prediction, Our ECDFormer reduces the time of acquiring ECD spectra from 1-100 hours per molecule to 1.5s.
By using the stochastic particle method, the truncated Euler-Maruyama (TEM) method is proposed for numerically solving McKean-Vlasov stochastic differential equations (MV-SDEs), possibly with both drift and diffusion coefficients having super-linear growth in the state variable. Firstly, the result of the propagation of chaos in the L^q (q\geq 2) sense is obtained under general assumptions. Then, the standard 1/2-order strong convergence rate in the L^q sense of the proposed method corresponding to the particle system is derived by utilizing the stopping time analysis technique. Furthermore, long-time dynamical properties of MV-SDEs, including the moment boundedness, stability, and the existence and uniqueness of the invariant probability measure, can be numerically realized by the TEM method. Additionally, it is proven that the numerical invariant measure converges to the underlying one of MV-SDEs in the L^2-Wasserstein metric. Finally, the conclusions obtained in this paper are verified through examples and numerical simulations.
The homogenization of elliptic divergence-type fourth-order operators with periodic coefficients is studied in a (periodic) domain. The aim is to find an operator with constant coefficients and represent the equation through a perturbation around this operator. The resolvent is found as $L^2 \to L^2$ operator using the Neumann series for the periodic fundamental solution of biharmonic operator. Results are based on some auxiliary Lemmas suggested by Bensoussan in 1986, Zhikov in 1991, Yu. Grabovsky and G. Milton in 1998, Pastukhova in 2016. Operators of the type considered in the paper appear in the study of the elastic properties of thin plates. The choice of the operator with constant coefficients is discussed separately and chosen in an optimal way w.r.t. the spectral radius and convergence of the Neumann series and uses the known bounds for ''homogenized'' coefficients. Similar ideas are usually applied for the construction of preconditioners for iterative solvers for finite dimensional problems resulting from discretized PDEs. The method presented is similar to Cholesky factorization transferred to elliptic operators (as in references mentioned above). Furthermore, the method can be applied to non-linear problems.
We introduce two iterative methods, GPBiLQ and GPQMR, for solving unsymmetric partitioned linear systems. The basic mechanism underlying GPBiLQ and GPQMR is a novel simultaneous tridiagonalization via biorthogonality that allows for short-recurrence iterative schemes. Similar to the biconjugate gradient method, it is possible to develop another method, GPBiCG, whose iterate (if it exists) can be obtained inexpensively from the GPBiLQ iterate. Whereas the iterate of GPBiCG may not exist, the iterates of GPBiLQ and GPQMR are always well defined as long as the biorthogonal tridiagonal reduction process does not break down. We discuss connections between the proposed methods and some existing methods, and give numerical experiments to illustrate the performance of the proposed methods.
The present work is devoted to strong approximations of a generalized Ait-Sahalia model arising from mathematical finance. The numerical study of the considered model faces essential difficulties caused by a drift that blows up at the origin, highly nonlinear drift and diffusion coefficients and positivity-preserving requirement. In this paper, a novel explicit Euler-type scheme is proposed, which is easily implementable and able to preserve positivity of the original model unconditionally, i.e., for any time step-size h>0. A mean-square convergence rate of order 0.5 is also obtained for the proposed scheme in both non-critical and general critical cases. Our work is motivated by the need to justify the multi-level Monte Carlo (MLMC) simulations for the underlying model, where the rate of mean-square convergence is required and the preservation of positivity is desirable particularly for large discretization time steps. To the best of our knowledge, this is the first paper to propose an unconditionally positivity preserving explicit scheme with order 1/2 of mean-square convergence for the model. Numerical experiments are finally provided to confirm the theoretical findings.