亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the widespread usage of VR devices and contents, demands for 3D scene generation techniques become more popular. Existing 3D scene generation models, however, limit the target scene to specific domain, primarily due to their training strategies using 3D scan dataset that is far from the real-world. To address such limitation, we propose LucidDreamer, a domain-free scene generation pipeline by fully leveraging the power of existing large-scale diffusion-based generative model. Our LucidDreamer has two alternate steps: Dreaming and Alignment. First, to generate multi-view consistent images from inputs, we set the point cloud as a geometrical guideline for each image generation. Specifically, we project a portion of point cloud to the desired view and provide the projection as a guidance for inpainting using the generative model. The inpainted images are lifted to 3D space with estimated depth maps, composing a new points. Second, to aggregate the new points into the 3D scene, we propose an aligning algorithm which harmoniously integrates the portions of newly generated 3D scenes. The finally obtained 3D scene serves as initial points for optimizing Gaussian splats. LucidDreamer produces Gaussian splats that are highly-detailed compared to the previous 3D scene generation methods, with no constraint on domain of the target scene. Project page: //luciddreamer-cvlab.github.io/

相關內容

 3D是英文“Three Dimensions”的簡稱,中文是指三維、三個維度、三個坐標,即有長、有寬、有高,換句話說,就是立體的,是相對于只有長和寬的平面(2D)而言。

Parameter efficient finetuning has emerged as a viable solution for improving the performance of Large Language Models without requiring massive resources and compute. Prior work on multilingual evaluation has shown that there is a large gap between the performance of LLMs on English and other languages. Further, there is also a large gap between the performance of smaller open-source models and larger LLMs. Finetuning can be an effective way to bridge this gap and make language models more equitable. In this work, we finetune the LLaMA-7B and Mistral-7B models on synthetic multilingual instruction tuning data to determine its effect on model performance on five downstream tasks covering twenty three languages in all. Additionally, we experiment with various parameters, such as rank for low-rank adaptation and values of quantisation to determine their effects on downstream performance and find that higher rank and higher quantisation values benefit low-resource languages. We find that parameter efficient finetuning of smaller open source models sometimes bridges the gap between the performance of these models and the larger ones, however, English performance can take a hit. We also find that finetuning sometimes improves performance on low-resource languages, while degrading performance on high-resource languages.

Natural Language Processing (NLP) aims to analyze the text via techniques in the computer science field. It serves the applications in healthcare, commerce, and education domains. Particularly, NLP has been applied to the education domain to help teaching and learning. In this survey, we review recent advances in NLP with a focus on solving problems related to the education domain. In detail, we begin with introducing the relevant background. Then, we present the taxonomy of NLP in the education domain. Next, we illustrate the task definition, challenges, and corresponding techniques based on the above taxonomy. After that, we showcase some off-the-shelf demonstrations in this domain and conclude with future directions.

The 6G paradigm and the massive usage of interconnected wireless devices introduced the need for flexible wireless networks. A promising approach lies in employing Mobile Robotic Platforms (MRPs) to create communications cells on-demand. The challenge consists in positioning the MRPs to improve the wireless connectivity offered. This is exacerbated in millimeter wave (mmWave), Terahertz (THz), and visible light-based networks, which imply the establishment of short-range, Line of Sight (LoS) wireless links to take advantage of the ultra-high bandwidth channels available. This paper proposes a solution to enable the obstacle-aware, autonomous positioning of MRPs and provide LoS wireless connectivity to communications devices. It consists of 1) a Vision Module that uses video data gathered by the MRP to determine the location of obstacles, wireless devices and users, and 2) a Control Module, which autonomously positions the MRP based on the information provided by the Vision Module. The proposed solution was validated in simulation and through experimental testing, showing that it is able to position an MRP while ensuring LoS wireless links between a mobile communications cell and wireless devices or users.

Recommendation systems are ubiquitous, from Spotify playlist suggestions to Amazon product suggestions. Nevertheless, depending on the methodology or the dataset, these systems typically fail to capture user preferences and generate general recommendations. Recent advancements in Large Language Models (LLM) offer promising results for analyzing user queries. However, employing these models to capture user preferences and efficiency remains an open question. In this paper, we propose LLMRS, an LLM-based zero-shot recommender system where we employ pre-trained LLM to encode user reviews into a review score and generate user-tailored recommendations. We experimented with LLMRS on a real-world dataset, the Amazon product reviews, for software purchase use cases. The results show that LLMRS outperforms the ranking-based baseline model while successfully capturing meaningful information from product reviews, thereby providing more reliable recommendations.

Recommendation systems, for documents, have become tools to find relevant content on the Web. However, these systems have limitations when it comes to recommending documents in languages different from the query language, which means they might overlook resources in non-native languages. This research focuses on representing documents across languages by using Transformer Leveraged Document Representations (TLDRs) that are mapped to a cross-lingual domain. Four multilingual pre-trained transformer models (mBERT, mT5 XLM RoBERTa, ErnieM) were evaluated using three mapping methods across 20 language pairs representing combinations of five selected languages of the European Union. Metrics like Mate Retrieval Rate and Reciprocal Rank were used to measure the effectiveness of mapped TLDRs compared to non-mapped ones. The results highlight the power of cross-lingual representations achieved through pre-trained transformers and mapping approaches suggesting a promising direction for expanding beyond language connections, between two specific languages.

Solving complicated AI tasks with different domains and modalities is a key step toward artificial general intelligence. While there are abundant AI models available for different domains and modalities, they cannot handle complicated AI tasks. Considering large language models (LLMs) have exhibited exceptional ability in language understanding, generation, interaction, and reasoning, we advocate that LLMs could act as a controller to manage existing AI models to solve complicated AI tasks and language could be a generic interface to empower this. Based on this philosophy, we present HuggingGPT, a framework that leverages LLMs (e.g., ChatGPT) to connect various AI models in machine learning communities (e.g., Hugging Face) to solve AI tasks. Specifically, we use ChatGPT to conduct task planning when receiving a user request, select models according to their function descriptions available in Hugging Face, execute each subtask with the selected AI model, and summarize the response according to the execution results. By leveraging the strong language capability of ChatGPT and abundant AI models in Hugging Face, HuggingGPT is able to cover numerous sophisticated AI tasks in different modalities and domains and achieve impressive results in language, vision, speech, and other challenging tasks, which paves a new way towards artificial general intelligence.

We present VeriX, a first step towards verified explainability of machine learning models in safety-critical applications. Specifically, our sound and optimal explanations can guarantee prediction invariance against bounded perturbations. We utilise constraint solving techniques together with feature sensitivity ranking to efficiently compute these explanations. We evaluate our approach on image recognition benchmarks and a real-world scenario of autonomous aircraft taxiing.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司