Reduced Order Models (ROMs) are of considerable importance in many areas of engineering in which computational time presents difficulties. Established approaches employ projection-based reduction such as Proper Orthogonal Decomposition, however, such methods can become inefficient or fail in the case of parameteric or strongly nonlinear models. Such limitations are usually tackled via a library of local reduction bases each of which being valid for a given parameter vector. The success of such methods, however, is strongly reliant upon the method used to relate the parameter vectors to the local bases, this is typically achieved using clustering or interpolation methods. We propose the replacement of these methods with a Variational Autoencoder (VAE) to be used as a generative model which can infer the local basis corresponding to a given parameter vector in a probabilistic manner. The resulting VAE-boosted parametric ROM \emph{VpROM} still retains the physical insights of a projection-based method but also allows for better treatment of problems where model dependencies or excitation traits cause the dynamic behavior to span multiple response regimes. Moreover, the probabilistic treatment of the VAE representation allows for uncertainty quantification on the reduction bases which may then be propagated to the ROM response. The performance of the proposed approach is validated on an open-source simulation benchmark featuring hysteresis and multi-parametric dependencies, and on a large-scale wind turbine tower characterised by nonlinear material behavior and model uncertainty.
Denoising Diffusion Probabilistic Models have shown extraordinary ability on various generative tasks. However, their slow inference speed renders them impractical in speech synthesis. This paper proposes a linear diffusion model (LinDiff) based on an ordinary differential equation to simultaneously reach fast inference and high sample quality. Firstly, we employ linear interpolation between the target and noise to design a diffusion sequence for training, while previously the diffusion path that links the noise and target is a curved segment. When decreasing the number of sampling steps (i.e., the number of line segments used to fit the path), the ease of fitting straight lines compared to curves allows us to generate higher quality samples from a random noise with fewer iterations. Secondly, to reduce computational complexity and achieve effective global modeling of noisy speech, LinDiff employs a patch-based processing approach that partitions the input signal into small patches. The patch-wise token leverages Transformer architecture for effective modeling of global information. Adversarial training is used to further improve the sample quality with decreased sampling steps. We test proposed method with speech synthesis conditioned on acoustic feature (Mel-spectrograms). Experimental results verify that our model can synthesize high-quality speech even with only one diffusion step. Both subjective and objective evaluations demonstrate that our model can synthesize speech of a quality comparable to that of autoregressive models with faster synthesis speed (3 diffusion steps).
Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 16s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.
Species-sampling problems (SSPs) refer to a vast class of statistical problems calling for the estimation of (discrete) functionals of the unknown species composition of an unobservable population. A common feature of SSPs is their invariance with respect to species labelling, which is at the core of the Bayesian nonparametric (BNP) approach to SSPs under the popular Pitman-Yor process (PYP) prior. In this paper, we develop a BNP approach to SSPs that are not "invariant" to species labelling, in the sense that an ordering or ranking is assigned to species' labels. Inspired by the population genetics literature on age-ordered alleles' compositions, we study the following SSP with ordering: given an observable sample from an unknown population of individuals belonging to species (alleles), with species' labels being ordered according to weights (ages), estimate the frequencies of the first $r$ order species' labels in an enlarged sample obtained by including additional unobservable samples. By relying on an ordered PYP prior, we obtain an explicit posterior distribution of the first $r$ order frequencies, with estimates being of easy implementation and computationally efficient. We apply our approach to the analysis of genetic variation, showing its effectiveness in estimating the frequency of the oldest allele, and then we discuss other potential applications.
The posterior collapse phenomenon in variational autoencoders (VAEs), where the variational posterior distribution closely matches the prior distribution, can hinder the quality of the learned latent variables. As a consequence of posterior collapse, the latent variables extracted by the encoder in VAEs preserve less information from the input data and thus fail to produce meaningful representations as input to the reconstruction process in the decoder. While this phenomenon has been an actively addressed topic related to VAEs performance, the theory for posterior collapse remains underdeveloped, especially beyond the standard VAEs. In this work, we advance the theoretical understanding of posterior collapse to two important and prevalent yet less studied classes of VAEs: conditional VAEs and hierarchical VAEs. Specifically, via a non-trivial theoretical analysis of linear conditional VAEs and hierarchical VAEs with two levels of latent, we prove that the cause of posterior collapses in these models includes the correlation between the input and output of the conditional VAEs and the effect of learnable encoder variance in the hierarchical VAEs. We empirically validate our theoretical findings for linear conditional and hierarchical VAEs and demonstrate that these results are also predictive for non-linear cases.
Demand for reliable statistics at a local area (small area) level has greatly increased in recent years. Traditional area-specific estimators based on probability samples are not adequate because of small sample size or even zero sample size in a local area. As a result, methods based on models linking the areas are widely used. World Bank focused on estimating poverty measures, in particular poverty incidence and poverty gap called FGT measures, using a simulated census method, called ELL, based on a one-fold nested error model for a suitable transformation of the welfare variable. Modified ELL methods leading to significant gain in efficiency over ELL also have been proposed under the one-fold model. An advantage of ELL and modified ELL methods is that distributional assumptions on the random effects in the model are not needed. In this paper, we extend ELL and modified ELL to two-fold nested error models to estimate poverty indicators for areas (say a state) and subareas (say counties within a state). Our simulation results indicate that the modified ELL estimators lead to large efficiency gains over ELL at the area level and subarea level. Further, modified ELL method retaining both area and subarea estimated effects in the model (called MELL2) performs significantly better in terms of mean squared error (MSE) for sampled subareas than the modified ELL retaining only estimated area effect in the model (called MELL1).
The estimation of causal effects is a primary goal of behavioral, social, economic and biomedical sciences. Under the unconfoundedness condition, adjustment for confounders requires estimating the nuisance functions relating outcome and/or treatment to confounders. This paper considers a generalized optimization framework for efficient estimation of general treatment effects using feedforward artificial neural networks (ANNs) when the number of covariates is allowed to increase with the sample size. We estimate the nuisance function by ANNs, and develop a new approximation error bound for the ANNs approximators when the nuisance function belongs to a mixed Sobolev space. We show that the ANNs can alleviate the curse of dimensionality under this circumstance. We further establish the consistency and asymptotic normality of the proposed treatment effects estimators, and apply a weighted bootstrap procedure for conducting inference. The proposed methods are illustrated via simulation studies and a real data application.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.
In order to overcome the expressive limitations of graph neural networks (GNNs), we propose the first method that exploits vector flows over graphs to develop globally consistent directional and asymmetric aggregation functions. We show that our directional graph networks (DGNs) generalize convolutional neural networks (CNNs) when applied on a grid. Whereas recent theoretical works focus on understanding local neighbourhoods, local structures and local isomorphism with no global information flow, our novel theoretical framework allows directional convolutional kernels in any graph. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then we propose the use of the Laplacian eigenvectors as such vector field, and we show that the method generalizes CNNs on an n-dimensional grid, and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. Finally, we bring the power of CNN data augmentation to graphs by providing a means of doing reflection, rotation and distortion on the underlying directional field. We evaluate our method on different standard benchmarks and see a relative error reduction of 8\% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset. An important outcome of this work is that it enables to translate any physical or biological problems with intrinsic directional axes into a graph network formalism with an embedded directional field.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.
Inferring missing links in knowledge graphs (KG) has attracted a lot of attention from the research community. In this paper, we tackle a practical query answering task involving predicting the relation of a given entity pair. We frame this prediction problem as an inference problem in a probabilistic graphical model and aim at resolving it from a variational inference perspective. In order to model the relation between the query entity pair, we assume that there exists an underlying latent variable (paths connecting two nodes) in the KG, which carries the equivalent semantics of their relations. However, due to the intractability of connections in large KGs, we propose to use variation inference to maximize the evidence lower bound. More specifically, our framework (\textsc{Diva}) is composed of three modules, i.e. a posterior approximator, a prior (path finder), and a likelihood (path reasoner). By using variational inference, we are able to incorporate them closely into a unified architecture and jointly optimize them to perform KG reasoning. With active interactions among these sub-modules, \textsc{Diva} is better at handling noise and coping with more complex reasoning scenarios. In order to evaluate our method, we conduct the experiment of the link prediction task on multiple datasets and achieve state-of-the-art performances on both datasets.