亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we examine a numerical phase-field fracture framework in which the crack irreversibility constraint is treated with a primal-dual active set method and a linearization is used in the degradation function to enhance the numerical stability. The first goal is to carefully derive from a complementarity system our primal-dual active set formulation, which has been used in the literature in numerous studies, but for phase-field fracture without its detailed mathematical derivation yet. Based on the latter, we formulate a modified combined active-set Newton approach that significantly reduces the computational cost in comparison to comparable prior algorithms for quasi-monolithic settings. For many practical problems, Newton converges fast, but active set needs many iterations, for which three different efficiency improvements are suggested in this paper. Afterwards, we design an iteration on the linearization in order to iterate the problem to the monolithic limit. Our new algorithms are implemented in the programming framework pfm-cracks [T. Heister, T. Wick; pfm-cracks: A parallel-adaptive framework for phase-field fracture propagation, Software Impacts, Vol. 6 (2020), 100045]. In the numerical examples, we conduct performance studies and investigate efficiency enhancements. The main emphasis is on the cost complexity by keeping the accuracy of numerical solutions and goal functionals. Our algorithmic suggestions are substantiated with the help of several benchmarks in two and three spatial dimensions. Therein, predictor-corrector adaptivity and parallel performance studies are explored as well.

相關內容

The aim of this article is to propose a new reduced-order modelling approach for parametric eigenvalue problems arising in electronic structure calculations. Namely, we develop nonlinear reduced basis techniques for the approximation of parametric eigenvalue problems inspired from quantum chemistry applications. More precisely, we consider here a one-dimensional model which is a toy model for the computation of the electronic ground state wavefunction of a system of electrons within a molecule, solution to the many-body electronic Schr\"odinger equation, where the varying parameters are the positions of the nuclei in the molecule. We estimate the decay rate of the Kolmogorov n-width of the set of solutions for this parametric problem in several settings, including the standard L2-norm as well as with distances based on optimal transport. The fact that the latter decays much faster than in the traditional L2-norm setting motivates us to propose a practical nonlinear reduced basis method, which is based on an offline greedy algorithm, and an efficient stochastic energy minimization in the online phase. We finally provide numerical results illustrating the capabilities of the method and good approximation properties, both in the offline and the online phase.

The notions and certain fundamental characteristics of the proximal and limiting normal cones with respect to a set are first presented in this paper. We present the ideas of the limiting coderivative and subdifferential with respect to a set of multifunctions and singleton mappings, respectively, based on these normal cones. The necessary and sufficient conditions for the Aubin property with respect to a set of multifunctions are then described by using the limiting coderivative with respect to a set. As a result of the limiting subdifferential with respect to a set, we offer the requisite optimality criteria for local solutions to optimization problems. In addition, we also provide examples to demonstrate the outcomes.

Rather than traditional position control, impedance control is preferred to ensure the safe operation of industrial robots programmed from demonstrations. However, variable stiffness learning studies have focused on task performance rather than safety (or compliance). Thus, this paper proposes a novel stiffness learning method to satisfy both task performance and compliance requirements. The proposed method optimizes the task and compliance objectives (T/C objectives) simultaneously via multi-objective Bayesian optimization. We define the stiffness search space by segmenting a demonstration into task phases, each with constant responsible stiffness. The segmentation is performed by identifying impedance control-aware switching linear dynamics (IC-SLD) from the demonstration. We also utilize the stiffness obtained by proposed IC-SLD as priors for efficient optimization. Experiments on simulated tasks and a real robot demonstrate that IC-SLD-based segmentation and the use of priors improve the optimization efficiency compared to existing baseline methods.

This paper investigates the problem of efficient constrained global optimization of hybrid models that are a composition of a known white-box function and an expensive multi-output black-box function subject to noisy observations, which often arises in real-world science and engineering applications. We propose a novel method, Constrained Upper Quantile Bound (CUQB), to solve such problems that directly exploits the composite structure of the objective and constraint functions that we show leads substantially improved sampling efficiency. CUQB is a conceptually simple, deterministic approach that avoid constraint approximations used by previous methods. Although the CUQB acquisition function is not available in closed form, we propose a novel differentiable sample average approximation that enables it to be efficiently maximized. We further derive bounds on the cumulative regret and constraint violation under a non-parametric Bayesian representation of the black-box function. Since these bounds depend sublinearly on the number of iterations under some regularity assumptions, we establis bounds on the convergence rate to the optimal solution of the original constrained problem. In contrast to most existing methods, CUQB further incorporates a simple infeasibility detection scheme, which we prove triggers in a finite number of iterations when the original problem is infeasible (with high probability given the Bayesian model). Numerical experiments on several test problems, including environmental model calibration and real-time optimization of a reactor system, show that CUQB significantly outperforms traditional Bayesian optimization in both constrained and unconstrained cases. Furthermore, compared to other state-of-the-art methods that exploit composite structure, CUQB achieves competitive empirical performance while also providing substantially improved theoretical guarantees.

Federated Learning (FL) has been an area of active research in recent years. There have been numerous studies in FL to make it more successful in the presence of data heterogeneity. However, despite the existence of many publications, the state of progress in the field is unknown. Many of the works use inconsistent experimental settings and there are no comprehensive studies on the effect of FL-specific experimental variables on the results and practical insights for a more comparable and consistent FL experimental setup. Furthermore, the existence of several benchmarks and confounding variables has further complicated the issue of inconsistency and ambiguity. In this work, we present the first comprehensive study on the effect of FL-specific experimental variables in relation to each other and performance results, bringing several insights and recommendations for designing a meaningful and well-incentivized FL experimental setup. We further aid the community by releasing FedZoo-Bench, an open-source library based on PyTorch with pre-implementation of 22 state-of-the-art methods, and a broad set of standardized and customizable features available at //github.com/MMorafah/FedZoo-Bench. We also provide a comprehensive comparison of several state-of-the-art (SOTA) methods to better understand the current state of the field and existing limitations.

The quantum dense output problem is the process of evaluating time-accumulated observables from time-dependent quantum dynamics using quantum computers. This problem arises frequently in applications such as quantum control and spectroscopic computation. We present a range of algorithms designed to operate on both early and fully fault-tolerant quantum platforms. These methodologies draw upon techniques like amplitude estimation, Hamiltonian simulation, quantum linear Ordinary Differential Equation (ODE) solvers, and quantum Carleman linearization. We provide a comprehensive complexity analysis with respect to the evolution time $T$ and error tolerance $\epsilon$. Our results demonstrate that the linearization approach can nearly achieve optimal complexity $\mathcal{O}(T/\epsilon)$ for a certain type of low-rank dense outputs. Moreover, we provide a linearization of the dense output problem that yields an exact and finite-dimensional closure which encompasses the original states. This formulation is related to the Koopman Invariant Subspace theory and may be of independent interest in nonlinear control and scientific machine learning.

The "Sum-Over-Paths" formalism is a way to symbolically manipulate linear maps that describe quantum systems, and is a tool that is used in formal verification of such systems. We give here a new set of rewrite rules for the formalism, and show that it is complete for "Toffoli-Hadamard", the simplest approximately universal fragment of quantum mechanics. We show that the rewriting is terminating, but not confluent (which is expected from the universality of the fragment). We do so using the connection between Sum-over-Paths and graphical language ZH-calculus, and also show how the axiomatisation translates into the latter. We provide generalisations of the presented rewrite rules, that can prove useful when trying to reduce terms in practice, and we show how to graphically make sense of these new rules. We show how to enrich the rewrite system to reach completeness for the dyadic fragments of quantum computation, used in particular in the Quantum Fourier Transform, and obtained by adding phase gates with dyadic multiples of $\pi$ to the Toffoli-Hadamard gate-set. Finally, we show how to perform sums and concatenation of arbitrary terms, something which is not native in a system designed for analysing gate-based quantum computation, but necessary when considering Hamiltonian-based quantum computation.

The utilization of finite field multipliers is pervasive in contemporary digital systems, with hardware implementation for bit parallel operation often necessitating millions of logic gates. However, various digital design issues, whether inherent or stemming from soft errors, can result in gate malfunction, ultimately can cause gates to malfunction, which in turn results in incorrect multiplier outputs. Thus, to prevent susceptibility to error, it is imperative to employ a reliable finite field multiplier implementation that boasts a robust fault detection capability. In order to achieve the best fault detection performance for finite field detection performance for finite field multipliers while maintaining a low-complexity implementation, this study proposes a novel fault detection scheme for a recent bit-parallel polynomial basis over GF(2m). The primary concept behind the proposed approach is centered on the implementation of an efficient BCH decoder that utilize Berlekamp-Rumsey-Solomon (BRS) algorithm and Chien-search method to effectively locate errors with minimal delay. The results of our synthesis indicate that our proposed error detection and correction architecture for a 45-bit multiplier with 5-bit errors achieves a 37% and 49% reduction in critical path delay compared to existing designs. Furthermore, a 45-bit multiplicand with five errors has hardware complexity that is only 80%, which is significantly less complex than the most advanced BCH-based fault recognition techniques, such as TMR, Hamming's single error correction, and LDPC-based methods for finite field multiplication which is desirable in constrained applications, such as smart cards, IoT devices, and implantable medical devices.

The considerable significance of Anomaly Detection (AD) problem has recently drawn the attention of many researchers. Consequently, the number of proposed methods in this research field has been increased steadily. AD strongly correlates with the important computer vision and image processing tasks such as image/video anomaly, irregularity and sudden event detection. More recently, Deep Neural Networks (DNNs) offer a high performance set of solutions, but at the expense of a heavy computational cost. However, there is a noticeable gap between the previously proposed methods and an applicable real-word approach. Regarding the raised concerns about AD as an ongoing challenging problem, notably in images and videos, the time has come to argue over the pitfalls and prospects of methods have attempted to deal with visual AD tasks. Hereupon, in this survey we intend to conduct an in-depth investigation into the images/videos deep learning based AD methods. We also discuss current challenges and future research directions thoroughly.

The difficulty of deploying various deep learning (DL) models on diverse DL hardwares has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardwares as output. However, none of the existing survey has analyzed the unique design of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis of the multi-level IR design and compiler optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the unique design of DL compiler, which we hope can pave the road for future research towards the DL compiler.

北京阿比特科技有限公司