The emerging mission-critical Internet of Things (IoT) play a vital role in remote healthcare, haptic interaction, and industrial automation, where timely delivery of status updates is crucial. The Age of Information (AoI) is an effective metric to capture and evaluate information freshness at the destination. A system design based solely on the optimization of the average AoI might not be adequate to capture the requirements of mission-critical applications, since averaging eliminates the effects of extreme events. In this paper, we introduce a Deep Reinforcement Learning (DRL)-based algorithm to improve AoI in mission-critical IoT applications. The objective is to minimize an AoI-based metric consisting of the weighted sum of the average AoI and the probability of exceeding an AoI threshold. We utilize the actor-critic method to train the algorithm to achieve optimized scheduling policy to solve the formulated problem. The performance of our proposed method is evaluated in a simulated setup and the results show a significant improvement in terms of the average AoI and the AoI violation probability compared to the related-work.
Recent studies indicate that Generative Pre-trained Transformer 4 with Vision (GPT-4V) outperforms human physicians in medical challenge tasks. However, these evaluations primarily focused on the accuracy of multi-choice questions alone. Our study extends the current scope by conducting a comprehensive analysis of GPT-4V's rationales of image comprehension, recall of medical knowledge, and step-by-step multimodal reasoning when solving New England Journal of Medicine (NEJM) Image Challenges - an imaging quiz designed to test the knowledge and diagnostic capabilities of medical professionals. Evaluation results confirmed that GPT-4V outperforms human physicians regarding multi-choice accuracy (88.0% vs. 77.0%, p=0.034). GPT-4V also performs well in cases where physicians incorrectly answer, with over 80% accuracy. However, we discovered that GPT-4V frequently presents flawed rationales in cases where it makes the correct final choices (27.3%), most prominent in image comprehension (21.6%). Regardless of GPT-4V's high accuracy in multi-choice questions, our findings emphasize the necessity for further in-depth evaluations of its rationales before integrating such models into clinical workflows.
In recent years, machine learning (ML) and neural networks (NNs) have gained widespread use and attention across various domains, particularly in transportation for achieving autonomy, including the emergence of flying taxis for urban air mobility (UAM). However, concerns about certification have come up, compelling the development of standardized processes encompassing the entire ML and NN pipeline. This paper delves into the inference stage and the requisite hardware, highlighting the challenges associated with IEEE 754 floating-point arithmetic and proposing alternative number representations. By evaluating diverse summation and dot product algorithms, we aim to mitigate issues related to non-associativity. Additionally, our exploration of fixed-point arithmetic reveals its advantages over floating-point methods, demonstrating significant hardware efficiencies. Employing an empirical approach, we ascertain the optimal bit-width necessary to attain an acceptable level of accuracy, considering the inherent complexity of bit-width optimization.
Environmental disasters such as floods, hurricanes, and wildfires have increasingly threatened communities worldwide, prompting various mitigation strategies. Among these, property buyouts have emerged as a prominent approach to reducing vulnerability to future disasters. This strategy involves governments purchasing at-risk properties from willing sellers and converting the land into open space, ostensibly reducing future disaster risk and impact. However, the aftermath of these buyouts, particularly concerning land-use patterns and community impacts, remains under-explored. This research aims to fill this gap by employing innovative techniques like satellite imagery analysis and deep learning to study these patterns. To achieve this goal, we employed FEMA's Hazard Mitigation Grant Program (HMGP) buyout dataset, encompassing over 41,004 addresses of these buyout properties from 1989 to 2017. Leveraging Google's Maps Static API, we gathered 40,053 satellite images corresponding to these buyout lands. Subsequently, we implemented five cutting-edge machine learning models to evaluate their performance in classifying land cover types. Notably, this task involved multi-class classification, and our model achieved an outstanding ROC-AUC score of 98.86%
Policy gradient methods equipped with deep neural networks have achieved great success in solving high-dimensional reinforcement learning (RL) problems. However, current analyses cannot explain why they are resistant to the curse of dimensionality. In this work, we study the sample complexity of the neural policy mirror descent (NPMD) algorithm with deep convolutional neural networks (CNN). Motivated by the empirical observation that many high-dimensional environments have state spaces possessing low-dimensional structures, such as those taking images as states, we consider the state space to be a $d$-dimensional manifold embedded in the $D$-dimensional Euclidean space with intrinsic dimension $d\ll D$. We show that in each iteration of NPMD, both the value function and the policy can be well approximated by CNNs. The approximation errors are controlled by the size of the networks, and the smoothness of the previous networks can be inherited. As a result, by properly choosing the network size and hyperparameters, NPMD can find an $\epsilon$-optimal policy with $\widetilde{O}(\epsilon^{-\frac{d}{\alpha}-2})$ samples in expectation, where $\alpha\in(0,1]$ indicates the smoothness of environment. Compared to previous work, our result exhibits that NPMD can leverage the low-dimensional structure of state space to escape from the curse of dimensionality, explaining the efficacy of deep policy gradient algorithms.
While valuable datasets such as PersonaChat provide a foundation for training persona-grounded dialogue agents, they lack diversity in conversational and narrative settings, primarily existing in the "real" world. To develop dialogue agents with unique personas, models are trained to converse given a specific persona, but hand-crafting these persona can be time-consuming, thus methods exist to automatically extract persona information from existing character-specific dialogue. However, these persona-extraction models are also trained on datasets derived from PersonaChat and struggle to provide high-quality persona information from conversational settings that do not take place in the real world, such as the fantasy-focused dataset, LIGHT. Creating new data to train models on a specific setting is human-intensive, thus prohibitively expensive. To address both these issues, we introduce a natural language inference method for post-hoc adapting a trained persona extraction model to a new setting. We draw inspiration from the literature of dialog natural language inference (NLI), and devise NLI-reranking methods to extract structured persona information from dialogue. Compared to existing persona extraction models, our method returns higher-quality extracted persona and requires less human annotation.
We present a large-scale empirical study of how choices of configuration parameters affect performance in knowledge distillation (KD). An example of such a KD parameter is the measure of distance between the predictions of the teacher and the student, common choices for which include the mean squared error (MSE) and the KL-divergence. Although scattered efforts have been made to understand the differences between such options, the KD literature still lacks a systematic study on their general effect on student performance. We take an empirical approach to this question in this paper, seeking to find out the extent to which such choices influence student performance across 13 datasets from 4 NLP tasks and 3 student sizes. We quantify the cost of making sub-optimal choices and identify a single configuration that performs well across the board.
Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyses have largely focused on magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigorously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping experiment. The results demonstrate the model's effectiveness in accurately identifying brain regions activated in response to specific tasks, distinguishing between magnitude and phase activation.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.