亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an algorithm for the solution of Sylvester equations with right-hand side of low rank. The method is based on projection onto a block rational Krylov subspace, with two key contributions with respect to the state-of-the-art. First, we show how to maintain the last pole equal to infinity throughout the iteration, by means of pole reodering. This allows for a cheap evaluation of the true residual at every step. Second, we extend the convergence analysis in [Beckermann B., An error analysis for rational Galerkin projection applied to the Sylvester equation, SINUM, 2011] to the block case. This extension allows to link the convergence with the problem of minimizing the norm of a small rational matrix over the spectra or field-of-values of the involved matrices. This is in contrast with the non-block case, where the minimum problem is scalar, instead of matrix-valued. Replacing the norm of the objective function with an easier to evaluate function yields several adaptive pole selection strategies, providing a theoretical analysis for known heuristics, as well as effective novel techniques.

相關內容

We present a polymorphic linear lambda-calculus as a proof language for second-order intuitionistic linear logic. The calculus includes addition and scalar multiplication, enabling the proof of a linearity result at the syntactic level.

We introduce a novel algorithm that converges to level-set convex viscosity solutions of high-dimensional Hamilton-Jacobi equations. The algorithm is applicable to a broad class of curvature motion PDEs, as well as a recently developed Hamilton-Jacobi equation for the Tukey depth, which is a statistical depth measure of data points. A main contribution of our work is a new monotone scheme for approximating the direction of the gradient, which allows for monotone discretizations of pure partial derivatives in the direction of, and orthogonal to, the gradient. We provide a convergence analysis of the algorithm on both regular Cartesian grids and unstructured point clouds in any dimension and present numerical experiments that demonstrate the effectiveness of the algorithm in approximating solutions of the affine flow in two dimensions and the Tukey depth measure of high-dimensional datasets such as MNIST and FashionMNIST.

Spectral deferred corrections (SDC) are a class of iterative methods for the numerical solution of ordinary differential equations. SDC can be interpreted as a Picard iteration to solve a fully implicit collocation problem, preconditioned with a low-order method. It has been widely studied for first-order problems, using explicit, implicit or implicit-explicit Euler and other low-order methods as preconditioner. For first-order problems, SDC achieves arbitrary order of accuracy and possesses good stability properties. While numerical results for SDC applied to the second-order Lorentz equations exist, no theoretical results are available for SDC applied to second-order problems. We present an analysis of the convergence and stability properties of SDC using velocity-Verlet as the base method for general second-order initial value problems. Our analysis proves that the order of convergence depends on whether the force in the system depends on the velocity. We also demonstrate that the SDC iteration is stable under certain conditions. Finally, we show that SDC can be computationally more efficient than a simple Picard iteration or a fourth-order Runge-Kutta-Nystr\"om method.

In this paper we give the detailed error analysis of two algorithms (denoted as $W_1$ and $W_2$) for computing the symplectic factorization of a symmetric positive definite and symplectic matrix $A \in \mathbb R^{2n \times 2n}$ in the form $A=LL^T$, where $L \in \mathbb R^{2n \times 2n}$ is a symplectic block lower triangular matrix. Algorithm $W_1$ is an implementation of the $HH^T$ factorization from [Dopico et al., 2009]. Algorithm $W_2$, proposed in [Bujok et al., 2023], uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrix blocks that appear during the factorization. We prove that Algorithm $W_2$ is numerically stable for a broader class of symmetric positive definite matrices $A \in \mathbb R^{2n \times 2n}$, producing the computed factors $\tilde L$ in floating-point arithmetic with machine precision $u$, such that $||A-\tilde L {\tilde L}^T||_2= {\cal O}(u ||A||_2)$. However, Algorithm $W_1$ is unstable in general for symmetric positive definite and symplectic matrix $A$. This was confirmed by numerical experiments in [Bujok et al., 2023]. In this paper we give corresponding bounds also for Algorithm $W_1$ that are weaker, since we show that the factorization error depends on the size of the inverse of the principal submatrix $A_{11}$. The tests performed in MATLAB illustrate that our error bounds for considered algorithms are reasonably sharp.

This work focuses on the conservation of quantities such as Hamiltonians, mass, and momentum when solution fields of partial differential equations are approximated with nonlinear parametrizations such as deep networks. The proposed approach builds on Neural Galerkin schemes that are based on the Dirac--Frenkel variational principle to train nonlinear parametrizations sequentially in time. We first show that only adding constraints that aim to conserve quantities in continuous time can be insufficient because the nonlinear dependence on the parameters implies that even quantities that are linear in the solution fields become nonlinear in the parameters and thus are challenging to discretize in time. Instead, we propose Neural Galerkin schemes that compute at each time step an explicit embedding onto the manifold of nonlinearly parametrized solution fields to guarantee conservation of quantities. The embeddings can be combined with standard explicit and implicit time integration schemes. Numerical experiments demonstrate that the proposed approach conserves quantities up to machine precision.

This manuscript studies the numerical solution of the time-fractional Burgers-Huxley equation in a reproducing kernel Hilbert space. The analytical solution of the equation is obtained in terms of a convergent series with easily computable components. It is observed that the approximate solution uniformly converges to the exact solution for the aforementioned equation. Also, the convergence of the proposed method is investigated. Numerical examples are given to demonstrate the validity and applicability of the presented method. The numerical results indicate that the proposed method is powerful and effective with a small computational overhead.

The probabilistic Latent Semantic Indexing model assumes that the expectation of the corpus matrix is low-rank and can be written as the product of a topic-word matrix and a word-document matrix. In this paper, we study the estimation of the topic-word matrix under the additional assumption that the ordered entries of its columns rapidly decay to zero. This sparsity assumption is motivated by the empirical observation that the word frequencies in a text often adhere to Zipf's law. We introduce a new spectral procedure for estimating the topic-word matrix that thresholds words based on their corpus frequencies, and show that its $\ell_1$-error rate under our sparsity assumption depends on the vocabulary size $p$ only via a logarithmic term. Our error bound is valid for all parameter regimes and in particular for the setting where $p$ is extremely large; this high-dimensional setting is commonly encountered but has not been adequately addressed in prior literature. Furthermore, our procedure also accommodates datasets that violate the separability assumption, which is necessary for most prior approaches in topic modeling. Experiments with synthetic data confirm that our procedure is computationally fast and allows for consistent estimation of the topic-word matrix in a wide variety of parameter regimes. Our procedure also performs well relative to well-established methods when applied to a large corpus of research paper abstracts, as well as the analysis of single-cell and microbiome data where the same statistical model is relevant but the parameter regimes are vastly different.

We aim to establish Bowen's equations for upper capacity invariance pressure and Pesin-Pitskel invariance pressure of discrete-time control systems. We first introduce a new invariance pressure called induced invariance pressure on partitions that specializes the upper capacity invariance pressure on partitions, and then show that the two types of invariance pressures are related by a Bowen's equation. Besides, to establish Bowen's equation for Pesin-Pitskel invariance pressure on partitions we also introduce a new notion called BS invariance dimension on subsets. Moreover, a variational principle for BS invariance dimension on subsets is established.

We explore a linear inhomogeneous elasticity equation with random Lam\'e parameters. The latter are parameterized by a countably infinite number of terms in separated expansions. The main aim of this work is to estimate expected values (considered as an infinite dimensional integral on the parametric space corresponding to the random coefficients) of linear functionals acting on the solution of the elasticity equation. To achieve this, the expansions of the random parameters are truncated, a high-order quasi-Monte Carlo (QMC) is combined with a sparse grid approach to approximate the high dimensional integral, and a Galerkin finite element method (FEM) is introduced to approximate the solution of the elasticity equation over the physical domain. The error estimates from (1) truncating the infinite expansion, (2) the Galerkin FEM, and (3) the QMC sparse grid quadrature rule are all studied. For this purpose, we show certain required regularity properties of the continuous solution with respect to both the parametric and physical variables. To achieve our theoretical regularity and convergence results, some reasonable assumptions on the expansions of the random coefficients are imposed. Finally, some numerical results are delivered.

The Reynolds equation, combined with the Elrod algorithm for including the effect of cavitation, resembles a nonlinear convection-diffusion-reaction (CDR) equation. Its solution by finite elements is prone to oscillations in convection-dominated regions, which are present whenever cavitation occurs. We propose a stabilized finite-element method that is based on the variational multiscale method and exploits the concept of orthogonal subgrid scales. We demonstrate that this approach only requires one additional term in the weak form to obtain a stable method that converges optimally when performing mesh refinement.

北京阿比特科技有限公司