$\newcommand{\Max}{\mathrm{Max4PC}}$ The Four point condition (4PC henceforth) is a well known condition characterising distances in trees $T$. Let $w,x,y,z$ be four vertices in $T$ and let $d_{x,y}$ denote the distance between vertices $x,y$ in $T$. The 4PC condition says that among the three terms $d_{w,x} + d_{y,z}$, $d_{w,y} + d_{x,z}$ and $d_{w,z} + d_{x,y}$ the maximum value equals the second maximum value. We define an $\binom{n}{2} \times \binom{n}{2}$ sized matrix $\Max_T$ from a tree $T$ where the rows and columns are indexed by size-2 subsets. The entry of $\Max_T$ corresponding to the row indexed by $\{w,x\}$ and column $\{y,z\}$ is the maximum value among the three terms $d_{w,x} + d_{y,z}$, $d_{w,y} + d_{x,z}$ and $d_{w,z} + d_{x,y}$. In this work, we determine basic properties of this matrix like rank, give an algorithm that outputs a family of bases, and find the determinant of $\Max_T$ when restricted to our basis. We further determine the inertia and the Smith Normal Form (SNF) of $\Max_T$.
We show how the relatively initial or relatively terminal fixed points for a well-behaved functor $F$ form a pair of adjoint functors between $F$-coalgebras and $F$-algebras. We use the language of locally presentable categories to find sufficient conditions for existence of this adjunction. We show that relative fixed points may be characterized as (co)equalizers of the free (co)monad on $F$. In particular, when $F$ is a polynomial functor on $\mathsf{Set}$ the relative fixed points are a quotient or subset of the free term algebra or the cofree term coalgebra. We give examples of the relative fixed points for polynomial functors and an example which is the Sierpinski carpet. Lastly, we prove a general preservation result for relative fixed points.
The property that the velocity $\boldsymbol{u}$ belongs to $L^\infty(0,T;L^2(\Omega)^d)$ is an essential requirement in the definition of energy solutions of models for incompressible fluids. It is, therefore, highly desirable that the solutions produced by discretisation methods are uniformly stable in the $L^\infty(0,T;L^2(\Omega)^d)$-norm. In this work, we establish that this is indeed the case for Discontinuous Galerkin (DG) discretisations (in time and space) of non-Newtonian models with $p$-structure, assuming that $p\geq \frac{3d+2}{d+2}$; the time discretisation is equivalent to the RadauIIA Implicit Runge-Kutta method. We also prove (weak) convergence of the numerical scheme to the weak solution of the system; this type of convergence result for schemes based on quadrature seems to be new. As an auxiliary result, we also derive Gagliardo-Nirenberg-type inequalities on DG spaces, which might be of independent interest.
Given a sample of size $N$, it is often useful to select a subsample of smaller size $n<N$ to be used for statistical estimation or learning. Such a data selection step is useful to reduce the requirements of data labeling and the computational complexity of learning. We assume to be given $N$ unlabeled samples $\{{\boldsymbol x}_i\}_{i\le N}$, and to be given access to a `surrogate model' that can predict labels $y_i$ better than random guessing. Our goal is to select a subset of the samples, to be denoted by $\{{\boldsymbol x}_i\}_{i\in G}$, of size $|G|=n<N$. We then acquire labels for this set and we use them to train a model via regularized empirical risk minimization. By using a mixture of numerical experiments on real and synthetic data, and mathematical derivations under low- and high- dimensional asymptotics, we show that: $(i)$~Data selection can be very effective, in particular beating training on the full sample in some cases; $(ii)$~Certain popular choices in data selection methods (e.g. unbiased reweighted subsampling, or influence function-based subsampling) can be substantially suboptimal.
We introduce a novel formulation for the evolution of parametric curves by anisotropic curve shortening flow in ${\mathbb R}^d$, $d\geq2$. The reformulation hinges on a suitable manipulation of the parameterization's tangential velocity, leading to a strictly parabolic differential equation. Moreover, the derived equation is in divergence form, giving rise to a natural variational numerical method. For a fully discrete finite element approximation based on piecewise linear elements we prove optimal error estimates. Numerical simulations confirm the theoretical results and demonstrate the practicality of the method.
We show that the problem of counting the number of $n$-variable unate functions reduces to the problem of counting the number of $n$-variable monotone functions. Using recently obtained results on $n$-variable monotone functions, we obtain counts of $n$-variable unate functions up to $n=9$. We use an enumeration strategy to obtain the number of $n$-variable balanced monotone functions up to $n=7$. We show that the problem of counting the number of $n$-variable balanced unate functions reduces to the problem of counting the number of $n$-variable balanced monotone functions, and consequently, we obtain the number of $n$-variable balanced unate functions up to $n=7$. Using enumeration, we obtain the numbers of equivalence classes of $n$-variable balanced monotone functions, unate functions and balanced unate functions up to $n=6$. Further, for each of the considered sub-class of $n$-variable monotone and unate functions, we also obtain the corresponding numbers of $n$-variable non-degenerate functions.
Approximated forms of the RII and RIII redistribution matrices are frequently applied to simplify the numerical solution of the radiative transfer problem for polarized radiation, taking partial frequency redistribution (PRD) effects into account. A widely used approximation for RIII is to consider its expression under the assumption of complete frequency redistribution (CRD) in the observer frame (RIII CRD). The adequacy of this approximation for modeling the intensity profiles has been firmly established. By contrast, its suitability for modeling scattering polarization signals has only been analyzed in a few studies, considering simplified settings. In this work, we aim at quantitatively assessing the impact and the range of validity of the RIII CRD approximation in the modeling of scattering polarization. Methods. We first present an analytic comparison between RIII and RIII CRD. We then compare the results of radiative transfer calculations, out of local thermodynamic equilibrium, performed with RIII and RIII CRD in realistic 1D atmospheric models. We focus on the chromospheric Ca i line at 4227 A and on the photospheric Sr i line at 4607 A.
We present a new and straightforward derivation of a family $\mathcal{F}(h,\tau)$ of exponential splittings of Strang-type for the general linear evolutionary equation with two linear components. One component is assumed to be a time-independent, unbounded operator, while the other is a bounded one with explicit time dependence. The family $\mathcal{F}(h,\tau)$ is characterized by the length of the time-step $h$ and a continuous parameter $\tau$, which defines each member of the family. It is shown that the derivation and error analysis follows from two elementary arguments: the variation of constants formula and specific quadratures for integrals over simplices. For these Strang-type splittings, we prove their convergence which, depending on some commutators of the relevant operators, may be of first or second order. As a result, error bounds appear in terms of commutator bounds. Based on the explicit form of the error terms, we establish the influence of $\tau$ on the accuracy of $\mathcal{F}(h,\tau)$, allowing us to investigate the optimal value of $\tau$. This simple yet powerful approach establishes the connection between exponential integrators and splitting methods. Furthermore, the present approach can be easily applied to the derivation of higher-order splitting methods under similar considerations. Needless to say, the obtained results also apply to Strang-type splittings in the case of time independent-operators. To complement rigorous results, we present numerical experiments with various values of $\tau$ based on the linear Schr\"odinger equation.
We consider the problem of fitting a centered ellipsoid to $n$ standard Gaussian random vectors in $\mathbb{R}^d$, as $n, d \to \infty$ with $n/d^2 \to \alpha > 0$. It has been conjectured that this problem is, with high probability, satisfiable (SAT; that is, there exists an ellipsoid passing through all $n$ points) for $\alpha < 1/4$, and unsatisfiable (UNSAT) for $\alpha > 1/4$. In this work we give a precise analytical argument, based on the non-rigorous replica method of statistical physics, that indeed predicts a SAT/UNSAT transition at $\alpha = 1/4$, as well as the shape of a typical fitting ellipsoid in the SAT phase (i.e., the lengths of its principal axes). Besides the replica method, our main tool is the dilute limit of extensive-rank "HCIZ integrals" of random matrix theory. We further study different explicit algorithmic constructions of the matrix characterizing the ellipsoid. In particular, we show that a procedure based on minimizing its nuclear norm yields a solution in the whole SAT phase. Finally, we characterize the SAT/UNSAT transition for ellipsoid fitting of a large class of rotationally-invariant random vectors. Our work suggests mathematically rigorous ways to analyze fitting ellipsoids to random vectors, which is the topic of a companion work.
We discuss the numerical solution of initial value problems for $\varepsilon^2\,\varphi''+a(x)\,\varphi=0$ in the highly oscillatory regime, i.e., with $a(x)>0$ and $0<\varepsilon\ll 1$. We analyze and implement an approximate solution based on the well-known WKB-ansatz. The resulting approximation error is of magnitude $\mathcal{O}(\varepsilon^{N})$ where $N$ refers to the truncation order of the underlying asymptotic series. When the optimal truncation order $N_{opt}$ is chosen, the error behaves like $\mathcal{O}(\varepsilon^{-2}\exp(-c\varepsilon^{-1}))$ with some $c>0$.
We describe the computer-aided classification of equitable partitions of the $12$-cube with quotient matrix $[[2,10],[6,6]]$, or, equivalently, simple orthogonal arrays OA$(1536,12,2,7)$, or order-$7$ correlation-immune Boolean functions in $12$ variables with $1536$ ones (which completes the classification of unbalanced order-$7$ correlation-immune Boolean functions in $12$ variables). We find that there are $103$ equivalence classes of the considered objects, and there are only two almost-OA$(1536,12,2,8)$ among them. Additionally, we find that there are $40$ equivalence classes of pairs of disjoint simple OA$(1536,12,2,7)$ (equivalently, equitable partitions of the $12$-cube with quotient matrix $[[2,6,4], [6,2,4], [6,6,0]]$) and discuss the existence of a non-simple OA$(1536,12,2,7)$. Keywords: orthogonal arrays, correlation-immune Boolean functions, equitable partitions, perfect colorings, intriguing sets.