We study the forgetting properties of the particle filter when its state - the collection of particles - is regarded as a Markov chain. Under a strong mixing assumption on the particle filter's underlying Feynman-Kac model, we find that the particle filter is exponentially mixing, and forgets its initial state in $O(\log N )$ `time', where $N$ is the number of particles and time refers to the number of particle filter algorithm steps, each comprising a selection (or resampling) and mutation (or prediction) operation. We present an example which suggests that this rate is optimal. In contrast to our result, available results to-date are extremely conservative, suggesting $O(\alpha^N)$ time steps are needed, for some $\alpha>1$, for the particle filter to forget its initialisation. We also study the conditional particle filter (CPF) and extend our forgetting result to this context. We establish a similar conclusion, namely, CPF is exponentially mixing and forgets its initial state in $O(\log N )$ time. To support this analysis, we establish new time-uniform $L^p$ error estimates for CPF, which can be of independent interest.
Quality assessment algorithms can be used to estimate the utility of a biometric sample for the purpose of biometric recognition. "Error versus Discard Characteristic" (EDC) plots, and "partial Area Under Curve" (pAUC) values of curves therein, are generally used by researchers to evaluate the predictive performance of such quality assessment algorithms. An EDC curve depends on an error type such as the "False Non Match Rate" (FNMR), a quality assessment algorithm, a biometric recognition system, a set of comparisons each corresponding to a biometric sample pair, and a comparison score threshold corresponding to a starting error. To compute an EDC curve, comparisons are progressively discarded based on the associated samples' lowest quality scores, and the error is computed for the remaining comparisons. Additionally, a discard fraction limit or range must be selected to compute pAUC values, which can then be used to quantitatively rank quality assessment algorithms. This paper discusses and analyses various details for this kind of quality assessment algorithm evaluation, including general EDC properties, interpretability improvements for pAUC values based on a hard lower error limit and a soft upper error limit, the use of relative instead of discrete rankings, stepwise vs. linear curve interpolation, and normalisation of quality scores to a [0, 100] integer range. We also analyse the stability of quantitative quality assessment algorithm rankings based on pAUC values across varying pAUC discard fraction limits and starting errors, concluding that higher pAUC discard fraction limits should be preferred. The analyses are conducted both with synthetic data and with real face image and fingerprint data, with a focus on general modality-independent conclusions for EDC evaluations. Various EDC alternatives are discussed as well.
We consider manipulations in the context of coalitional games, where a coalition aims to increase the total payoff of its members. An allocation rule is immune to coalitional manipulation if no coalition can benefit from internal reallocation of worth on the level of its subcoalitions (reallocation-proofness), and if no coalition benefits from a lower worth while all else remains the same (weak coalitional monotonicity). Replacing additivity in Shapley's original characterization by these requirements yields a new foundation of the Shapley value, i.e., it is the unique efficient and symmetric allocation rule that awards nothing to a null player and is immune to coalitional manipulations. We further find that for efficient allocation rules, reallocation-proofness is equivalent to constrained marginality, a weaker variant of Young's marginality axiom. Our second characterization improves upon Young's characterization by weakening the independence requirement intrinsic to marginality.
The research on Reconfigurable Intelligent Surfaces (RISs) has dominantly been focused on physical-layer aspects and analyses of the achievable adaptation of the wireless propagation environment. Compared to that, questions related to system-level integration of RISs have received less attention. We address this research gap by analyzing the necessary control/signaling operations that are necessary to integrate RIS as a new type of wireless infrastructure element. We build a general model for evaluating the impact of control operations along two dimensions: i) the allocated bandwidth of the control channels (in-band and out-of-band), and ii) the rate selection for the data channel (multiplexing or diversity). Specifically, the second dimension results in two generic transmission schemes, one based on channel estimation and the subsequent optimization of the RIS, while the other is based on sweeping through predefined RIS phase configurations. We analyze the communication performance in multiple setups built along these two dimensions. While necessarily simplified, our analysis reveals the basic trade-offs in RIS-assisted communication and the associated control operations. The main contribution of the paper is a methodology for systematic evaluation of the control overhead in RIS-aided networks, regardless of the specific control schemes used.
In online binary classification under \textit{apple tasting} feedback, the learner only observes the true label if it predicts "1". First studied by \cite{helmbold2000apple}, we revisit this classical partial-feedback setting and study online learnability from a combinatorial perspective. We show that the Littlestone dimension continues to prove a tight quantitative characterization of apple tasting in the agnostic setting, closing an open question posed by \cite{helmbold2000apple}. In addition, we give a new combinatorial parameter, called the Effective width, that tightly quantifies the minimax expected mistakes in the realizable setting. As a corollary, we use the Effective width to establish a \textit{trichotomy} of the minimax expected number of mistakes in the realizable setting. In particular, we show that in the realizable setting, the expected number of mistakes for any learner under apple tasting feedback can only be $\Theta(1), \Theta(\sqrt{T})$, or $\Theta(T)$.
We study the consistency of surrogate risks for robust binary classification. It is common to learn robust classifiers by adversarial training, which seeks to minimize the expected $0$-$1$ loss when each example can be maliciously corrupted within a small ball. We give a simple and complete characterization of the set of surrogate loss functions that are \emph{consistent}, i.e., that can replace the $0$-$1$ loss without affecting the minimizing sequences of the original adversarial risk, for any data distribution. We also prove a quantitative version of adversarial consistency for the $\rho$-margin loss. Our results reveal that the class of adversarially consistent surrogates is substantially smaller than in the standard setting, where many common surrogates are known to be consistent.
We provide the first convergence guarantee for full black-box variational inference (BBVI), also known as Monte Carlo variational inference. While preliminary investigations worked on simplified versions of BBVI (e.g., bounded domain, bounded support, only optimizing for the scale, and such), our setup does not need any such algorithmic modifications. Our results hold for log-smooth posterior densities with and without strong log-concavity and the location-scale variational family. Also, our analysis reveals that certain algorithm design choices commonly employed in practice, particularly, nonlinear parameterizations of the scale of the variational approximation, can result in suboptimal convergence rates. Fortunately, running BBVI with proximal stochastic gradient descent fixes these limitations, and thus achieves the strongest known convergence rate guarantees. We evaluate this theoretical insight by comparing proximal SGD against other standard implementations of BBVI on large-scale Bayesian inference problems.
We show that when the propensity score is estimated using a suitable covariate balancing procedure, the commonly used inverse probability weighting (IPW) estimator, augmented inverse probability weighting (AIPW) with linear conditional mean, and inverse probability weighted regression adjustment (IPWRA) with linear conditional mean are all numerically the same for estimating the average treatment effect (ATE) or the average treatment effect on the treated (ATT). Further, suitably chosen covariate balancing weights are automatically normalized, which means that normalized and unnormalized versions of IPW and AIPW are identical. For estimating the ATE, the weights that achieve the algebraic equivalence of IPW, AIPW, and IPWRA are based on propensity scores estimated using the inverse probability tilting (IPT) method of Graham, Pinto and Egel (2012). For the ATT, the weights are obtained using the covariate balancing propensity score (CBPS) method developed in Imai and Ratkovic (2014). These equivalences also make covariate balancing methods attractive when the treatment is confounded and one is interested in the local average treatment effect.
Convergence and compactness properties of approximate solutions to elliptic partial differential computed with the hybridized discontinuous Galerkin (HDG) are established. While it is known that solutions computed using the HDG scheme converge at optimal rates to smooth solutions, this does not establish the stability of the method or convergence to solutions with minimal regularity. The compactness and convergence results show that the HDG scheme can be utilized for the solution of nonlinear problems and linear problems with non-smooth coefficients on domains with reentrant corners.
We present an approach to the verification of systems for whose description some elements - constants or functions - are underspecified and can be regarded as parameters, and, in particular, describe a method for automatically generating constraints on such parameters under which certain safety conditions are guaranteed to hold. We present an implementation and illustrate its use on several examples.
We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.