亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by demand-responsive parking pricing systems, we consider posted-price algorithms for the online metric matching problem. We give an $O(\log n)$-competitive posted-price randomized algorithm in the case that the metric space is a line. In particular, in this setting we show how to implement the ubiquitous guess-and-double technique using prices.

相關內容

Angluin's L$^*$ algorithm learns the minimal deterministic finite automaton (DFA) of a regular language using membership and equivalence queries. Its probabilistic approximatively correct (PAC) version substitutes an equivalence query by numerous random membership queries to get a high level confidence to the answer. Thus it can be applied to any kind of device and may be viewed as an algorithm for synthesizing an automaton abstracting the behavior of the device based on observations. Here we are interested on how Angluin's PAC learning algorithm behaves for devices which are obtained from a DFA by introducing some noise. More precisely we study whether Angluin's algorithm reduces the noise and produces a DFA closer to the original one than the noisy device. We propose several ways to introduce the noise: (1) the noisy device inverts the classification of words w.r.t. the DFA with a small probability, (2) the noisy device modifies with a small probability the letters of the word before asking its classification w.r.t. the DFA, (3) the noisy device combines the classification of a word w.r.t. the DFA and its classification w.r.t. a counter automaton, and (4) the noisy DFA is obtained by a random process from two DFA such that the language of the first one is included in the second one. Then when a word is accepted (resp. rejected) by the first (resp. second) one, it is also accepted (resp. rejected) and in the remaining cases, it is accepted with probability 0.5. Our main experimental contributions consist in showing that: (1) Angluin's algorithm behaves well whenever the noisy device is produced by a random process, (2) but poorly with a structured noise, and, that (3) is able to eliminate pathological behaviours specified in a regular way. Theoretically, we show that randomness almost surely yields systems with non-recursively enumerable languages.

Given an arbitrary set of high dimensional points in $\ell_1$, there are known negative results that preclude the possibility of mapping them to a low dimensional $\ell_1$ space while preserving distances with small multiplicative distortion. This is in stark contrast with dimension reduction in Euclidean space ($\ell_2$) where such mappings are always possible. While the first non-trivial lower bounds for $\ell_1$ dimension reduction were established almost 20 years ago, there has been minimal progress in understanding what sets of points in $\ell_1$ are conducive to a low-dimensional mapping. In this work, we shift the focus from the worst-case setting and initiate the study of a characterization of $\ell_1$ metrics that are conducive to dimension reduction in $\ell_1$. Our characterization focuses on metrics that are defined by the disagreement of binary variables over a probability distribution -- any $\ell_1$ metric can be represented in this form. We show that, for configurations of $n$ points in $\ell_1$ obtained from tree Ising models, we can reduce dimension to $\mathrm{polylog}(n)$ with constant distortion. In doing so, we develop technical tools for embedding capped metrics (also known as truncated metrics) which have been studied because of their applications in computer vision, and are objects of independent interest in metric geometry.

Optimizing and certifying the positivity of polynomials are fundamental primitives across mathematics and engineering applications, from dynamical systems to operations research. However, solving these problems in practice requires large semidefinite programs, with poor scaling in dimension and degree. In this work, we demonstrate for the first time that neural networks can effectively solve such problems in a data-driven fashion, achieving tenfold speedups while retaining high accuracy. Moreover, we observe that these polynomial learning problems are equivariant to the non-compact group $SL(2,\mathbb{R})$, which consists of area-preserving linear transformations. We therefore adapt our learning pipelines to accommodate this structure, including data augmentation, a new $SL(2,\mathbb{R})$-equivariant architecture, and an architecture equivariant with respect to its maximal compact subgroup, $SO(2, \mathbb{R})$. Surprisingly, the most successful approaches in practice do not enforce equivariance to the entire group, which we prove arises from an unusual lack of architecture universality for $SL(2,\mathbb{R})$ in particular. A consequence of this result, which is of independent interest, is that there exists an equivariant function for which there is no sequence of equivariant polynomials multiplied by arbitrary invariants that approximates the original function. This is a rare example of a symmetric problem where data augmentation outperforms a fully equivariant architecture, and provides interesting lessons in both theory and practice for other problems with non-compact symmetries.

This report provides the mathematical details of the gsplat library, a modular toolbox for efficient differentiable Gaussian splatting, as proposed by Kerbl et al. It provides a self-contained reference for the computations involved in the forward and backward passes of differentiable Gaussian splatting. To facilitate practical usage and development, we provide a user friendly Python API that exposes each component of the forward and backward passes in rasterization at github.com/nerfstudio-project/gsplat .

Generating graphs from a target distribution is a significant challenge across many domains, including drug discovery and social network analysis. In this work, we introduce a novel graph generation method leveraging $K^2$-tree representation, originally designed for lossless graph compression. The $K^2$-tree representation {encompasses inherent hierarchy while enabling compact graph generation}. In addition, we make contributions by (1) presenting a sequential $K^2$-treerepresentation that incorporates pruning, flattening, and tokenization processes and (2) introducing a Transformer-based architecture designed to generate the sequence by incorporating a specialized tree positional encoding scheme. Finally, we extensively evaluate our algorithm on four general and two molecular graph datasets to confirm its superiority for graph generation.

We study a subclass of $n$-player stochastic games, namely, stochastic games with independent chains and unknown transition matrices. In this class of games, players control their own internal Markov chains whose transitions do not depend on the states/actions of other players. However, players' decisions are coupled through their payoff functions. We assume players can receive only realizations of their payoffs, and that the players can not observe the states and actions of other players, nor do they know the transition probability matrices of their own Markov chain. Relying on a compact dual formulation of the game based on occupancy measures and the technique of confidence set to maintain high-probability estimates of the unknown transition matrices, we propose a fully decentralized mirror descent algorithm to learn an $\epsilon$-NE for this class of games. The proposed algorithm has the desired properties of independence, scalability, and convergence. Specifically, under no assumptions on the reward functions, we show the proposed algorithm converges in polynomial time in a weaker distance (namely, the averaged Nikaido-Isoda gap) to the set of $\epsilon$-NE policies with arbitrarily high probability. Moreover, assuming the existence of a variationally stable Nash equilibrium policy, we show that the proposed algorithm converges asymptotically to the stable $\epsilon$-NE policy with arbitrarily high probability. In addition to Markov potential games and linear-quadratic stochastic games, this work provides another subclass of $n$-player stochastic games that, under some mild assumptions, admit polynomial-time learning algorithms for finding their stationary $\epsilon$-NE policies.

We study whether a discrete quantum walk can get arbitrarily close to a state whose entries have the same absolute value over all the arcs, given that the walk starts with a uniform superposition of the outgoing arcs of some vertex. We characterize this phenomenon on non-bipartite graphs using the adjacency spectrum of the graph; in particular, if this happens in some association scheme and the state we get arbitrarily close to ``respects the neighborhood", then it happens regardless of the initial vertex, and the adjacency algebra of the graph contains a real (regular) Hadamard matrix. We then find infinite families of primitive strongly regular graphs that admit this phenomenon. We also derive some results on a strengthening of this phenomenon called simultaneous $\epsilon$-uniform mixing, which enables local $\epsilon$-uniform mixing at every vertex.

We consider the paradigm of unsupervised anomaly detection, which involves the identification of anomalies within a dataset in the absence of labeled examples. Though distance-based methods are top-performing for unsupervised anomaly detection, they suffer heavily from the sensitivity to the choice of the number of the nearest neighbors. In this paper, we propose a new distance-based algorithm called bagged regularized $k$-distances for anomaly detection (BRDAD) converting the unsupervised anomaly detection problem into a convex optimization problem. Our BRDAD algorithm selects the weights by minimizing the surrogate risk, i.e., the finite sample bound of the empirical risk of the bagged weighted $k$-distances for density estimation (BWDDE). This approach enables us to successfully address the sensitivity challenge of the hyperparameter choice in distance-based algorithms. Moreover, when dealing with large-scale datasets, the efficiency issues can be addressed by the incorporated bagging technique in our BRDAD algorithm. On the theoretical side, we establish fast convergence rates of the AUC regret of our algorithm and demonstrate that the bagging technique significantly reduces the computational complexity. On the practical side, we conduct numerical experiments on anomaly detection benchmarks to illustrate the insensitivity of parameter selection of our algorithm compared with other state-of-the-art distance-based methods. Moreover, promising improvements are brought by applying the bagging technique in our algorithm on real-world datasets.

As Internet censors rapidly evolve new blocking techniques, circumvention tools must also adapt and roll out new strategies to remain unblocked. But new strategies can be time consuming for circumventors to develop and deploy, and usually an update to one tool often requires significant additional effort to be ported to others. Moreover, distributing the updated application across different platforms poses its own set of challenges. In this paper, we introduce $\textit{WATER}$ (WebAssembly Transport Executables Runtime), a novel design that enables applications to use a WebAssembly-based application-layer to wrap network transports (e.g., TLS). Deploying a new circumvention technique with $\textit{WATER}$ only requires distributing the WebAssembly Transport Module(WATM) binary and any transport-specific configuration, allowing dynamic transport updates without any change to the application itself. WATMs are also designed to be generic such that different applications using $\textit{WATER}$ can use the same WATM to rapidly deploy successful circumvention techniques to their own users, facilitating rapid interoperability between independent circumvention tools.

Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.

北京阿比特科技有限公司