亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural network based approaches to speech enhancement have shown to be particularly powerful, being able to leverage a data-driven approach to result in a significant performance gain versus other approaches. Such approaches are reliant on artificially created labelled training data such that the neural model can be trained using intrusive loss functions which compare the output of the model with clean reference speech. Performance of such systems when enhancing real-world audio often suffers relative to their performance on simulated test data. In this work, a non-intrusive multi-metric prediction approach is introduced, wherein a model trained on artificial labelled data using inference of an adversarially trained metric prediction neural network. The proposed approach shows improved performance versus state-of-the-art systems on the recent CHiME-7 challenge \ac{UDASE} task evaluation sets.

相關內容

Privacy-preserving neural networks have attracted increasing attention in recent years, and various algorithms have been developed to keep the balance between accuracy, computational complexity and information security from the cryptographic view. This work takes a different view from the input data and structure of neural networks. We decompose the input data (e.g., some images) into sensitive and insensitive segments according to importance and privacy. The sensitive segment includes some important and private information such as human faces and we take strong homomorphic encryption to keep security, whereas the insensitive one contains some background and we add perturbations. We propose the bi-CryptoNets, i.e., plaintext and ciphertext branches, to deal with two segments, respectively, and ciphertext branch could utilize the information from plaintext branch by unidirectional connections. We adopt knowledge distillation for our bi-CryptoNets by transferring representations from a well-trained teacher neural network. Empirical studies show the effectiveness and decrease of inference latency for our bi-CryptoNets.

Deep neural networks have exhibited remarkable performance in a variety of computer vision fields, especially in semantic segmentation tasks. Their success is often attributed to multi-level feature fusion, which enables them to understand both global and local information from an image. However, we found that multi-level features from parallel branches are on different scales. The scale disequilibrium is a universal and unwanted flaw that leads to detrimental gradient descent, thereby degrading performance in semantic segmentation. We discover that scale disequilibrium is caused by bilinear upsampling, which is supported by both theoretical and empirical evidence. Based on this observation, we propose injecting scale equalizers to achieve scale equilibrium across multi-level features after bilinear upsampling. Our proposed scale equalizers are easy to implement, applicable to any architecture, hyperparameter-free, implementable without requiring extra computational cost, and guarantee scale equilibrium for any dataset. Experiments showed that adopting scale equalizers consistently improved the mIoU index across various target datasets, including ADE20K, PASCAL VOC 2012, and Cityscapes, as well as various decoder choices, including UPerHead, PSPHead, ASPPHead, SepASPPHead, and FCNHead.

We propose a new multi-agent task grammar to encode collaborative tasks for a team of heterogeneous agents that can have overlapping capabilities. The grammar allows users to specify the relationship between agents and parts of the task without providing explicit assignments or constraints on the number of agents required. We develop a method to automatically find a team of agents and synthesize correct-by-construction control with synchronization policies to satisfy the task. We demonstrate the scalability of our approach through simulation and compare our method to existing task grammars that encode multi-agent tasks.

RRAM crossbars have been studied to construct in-memory accelerators for neural network applications due to their in-situ computing capability. However, prior RRAM-based accelerators show efficiency degradation when executing the popular attention models. We observed that the frequent softmax operations arise as the efficiency bottleneck and also are insensitive to computing precision. Thus, we propose STAR, which boosts the computing efficiency with an efficient RRAM-based softmax engine and a fine-grained global pipeline for the attention models. Specifically, STAR exploits the versatility and flexibility of RRAM crossbars to trade off the model accuracy and hardware efficiency. The experimental results evaluated on several datasets show STAR achieves up to 30.63x and 1.31x computing efficiency improvements over the GPU and the state-of-the-art RRAM-based attention accelerators, respectively.

Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at //github.com/google-research/google-research/tree/master/cluster_gcn.

Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results of bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably coherent, novel text articles with thousands of tokens. Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch.

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.

北京阿比特科技有限公司