亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We discuss the second-order differential uniformity of vectorial Boolean functions. The closely related notion of second-order zero differential uniformity has recently been studied in connection to resistance to the boomerang attack. We prove that monomial functions with univariate form $x^d$ where $d=2^{2k}+2^k+1$ and $\gcd(k,n)=1$ have optimal second-order differential uniformity. Computational results suggest that, up to affine equivalence, these might be the only optimal cubic power functions. We begin work towards generalising such conditions to all monomial functions of algebraic degree 3. We also discuss further questions arising from computational results.

相關內容

We investigate shift-invariant vectorial Boolean functions on $n$ bits that are induced from Boolean functions on $k$ bits, for $k\leq n$. We consider such functions that are not necessarily permutations, but are, in some sense, almost bijective, and their cryptographic properties. In this context, we define an almost lifting as a Boolean function for which there is an upper bound on the number of collisions of its induced functions that does not depend on $n$. We show that if a Boolean function with diameter $k$ is an almost lifting, then the maximum number of collisions of its induced functions is $2^{k-1}$ for any $n$. Moreover, we search for functions in the class of almost liftings that have good cryptographic properties and for which the non-bijectivity does not cause major security weaknesses. These functions generalize the well-known map $\chi$ used in the Keccak hash function.

The local dependence function is important in many applications of probability and statistics. We extend the bivariate local dependence function introduced by Bairamov and Kotz (2000) and further developed by Bairamov et al. (2003) to three-variate and multivariate local dependence function characterizing the dependency between three and more random variables in a given specific point. The definition and properties of the three-variate local dependence function are discussed. An example of a three-variate local dependence function for underlying three-variate normal distribution is presented. The graphs and tables with numerical values are provided. The multivariate extension of the local dependence function that can characterize the dependency between multiple random variables at a specific point is also discussed.

We propose a new numerical method for $\alpha$-dissipative solutions of the Hunter-Saxton equation, where $\alpha$ belongs to $W^{1, \infty}(\mathbb{R}, [0, 1))$. The method combines a projection operator with a generalized method of characteristics and an iteration scheme, which is based on enforcing minimal time steps whenever breaking times cluster. Numerical examples illustrate that these minimal time steps increase the efficiency of the algorithm substantially. Moreover, convergence of the wave profile is shown in $C([0, T], L^{\infty}(\mathbb{R}))$ for any finite $T \geq 0$.

Many natural computational problems in computer science, mathematics, physics, and other sciences amount to deciding if two objects are equivalent. Often this equivalence is defined in terms of group actions. A natural question is to ask when two objects can be distinguished by polynomial functions that are invariant under the group action. For finite groups, this is the usual notion of equivalence, but for continuous groups like the general linear groups it gives rise to a new notion, called orbit closure intersection. It captures, among others, the graph isomorphism problem, noncommutative PIT, null cone problems in invariant theory, equivalence problems for tensor networks, and the classification of multiparty quantum states. Despite recent algorithmic progress in celebrated special cases, the computational complexity of general orbit closure intersection problems is currently quite unclear. In particular, tensors seem to give rise to the most difficult problems. In this work we start a systematic study of orbit closure intersection from the complexity-theoretic viewpoint. To this end, we define a complexity class TOCI that captures the power of orbit closure intersection problems for general tensor actions, give an appropriate notion of algebraic reductions that imply polynomial-time reductions in the usual sense, but are amenable to invariant-theoretic techniques, identify natural tensor problems that are complete for TOCI, including the equivalence of 2D tensor networks with constant physical dimension, and show that the graph isomorphism problem can be reduced to these complete problems, hence GI$\subseteq$TOCI. As such, our work establishes the first lower bound on the computational complexity of orbit closure intersection problems, and it explains the difficulty of finding unconditional polynomial-time algorithms beyond special cases, as has been observed in the literature.

In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.

In this work is considered an elliptic problem, referred to as the Ventcel problem, involvinga second order term on the domain boundary (the Laplace-Beltrami operator). A variationalformulation of the Ventcel problem is studied, leading to a finite element discretization. Thefocus is on the construction of high order curved meshes for the discretization of the physicaldomain and on the definition of the lift operator, which is aimed to transform a functiondefined on the mesh domain into a function defined on the physical one. This lift is definedin a way as to satisfy adapted properties on the boundary, relatively to the trace operator.The Ventcel problem approximation is investigated both in terms of geometrical error and offinite element approximation error. Error estimates are obtained both in terms of the meshorder r $\ge$ 1 and to the finite element degree k $\ge$ 1, whereas such estimates usually have beenconsidered in the isoparametric case so far, involving a single parameter k = r. The numericalexperiments we led, both in dimension 2 and 3, allow us to validate the results obtained andproved on the a priori error estimates depending on the two parameters k and r. A numericalcomparison is made between the errors using the former lift definition and the lift defined inthis work establishing an improvement in the convergence rate of the error in the latter case.

We consider linear models with scalar responses and covariates from a separable Hilbert space. The aim is to detect change points in the error distribution, based on sequential residual empirical distribution functions. Expansions for those estimated functions are more challenging in models with infinite-dimensional covariates than in regression models with scalar or vector-valued covariates due to a slower rate of convergence of the parameter estimators. Yet the suggested change point test is asymptotically distribution-free and consistent for one-change point alternatives. In the latter case we also show consistency of a change point estimator.

There has been a surge of interest in uncertainty quantification for parametric partial differential equations (PDEs) with Gevrey regular inputs. The Gevrey class contains functions that are infinitely smooth with a growth condition on the higher-order partial derivatives, but which are nonetheless not analytic in general. Recent studies by Chernov and Le (Comput. Math. Appl., 2024, and SIAM J. Numer. Anal., 2024) as well as Harbrecht, Schmidlin, and Schwab (Math. Models Methods Appl. Sci., 2024) analyze the setting wherein the input random field is assumed to be uniformly bounded with respect to the uncertain parameters. In this paper, we relax this assumption and allow for parameter-dependent bounds. The parametric inputs are modeled as generalized Gaussian random variables, and we analyze the application of quasi-Monte Carlo (QMC) integration to assess the PDE response statistics using randomly shifted rank-1 lattice rules. In addition to the QMC error analysis, we also consider the dimension truncation and finite element errors in this setting.

We propose a novel, highly efficient, second-order accurate, long-time unconditionally stable numerical scheme for a class of finite-dimensional nonlinear models that are of importance in geophysical fluid dynamics. The scheme is highly efficient in the sense that only a (fixed) symmetric positive definite linear problem (with varying right hand sides) is involved at each time-step. The solutions to the scheme are uniformly bounded for all time. We show that the scheme is able to capture the long-time dynamics of the underlying geophysical model, with the global attractors as well as the invariant measures of the scheme converge to those of the original model as the step size approaches zero. In our numerical experiments, we take an indirect approach, using long-term statistics to approximate the invariant measures. Our results suggest that the convergence rate of the long-term statistics, as a function of terminal time, is approximately first order using the Jensen-Shannon metric and half-order using the L1 metric. This implies that very long time simulation is needed in order to capture a few significant digits of long time statistics (climate) correct. Nevertheless, the second order scheme's performance remains superior to that of the first order one, requiring significantly less time to reach a small neighborhood of statistical equilibrium for a given step size.

We develop two novel couplings between general pure-jump L\'evy processes in $\R^d$ and apply them to obtain upper bounds on the rate of convergence in an appropriate Wasserstein distance on the path space for a wide class of L\'evy processes attracted to a multidimensional stable process in the small-time regime. We also establish general lower bounds based on certain universal properties of slowly varying functions and the relationship between the Wasserstein and Toscani--Fourier distances of the marginals. Our upper and lower bounds typically have matching rates. In particular, the rate of convergence is polynomial for the domain of normal attraction and slower than a slowly varying function for the domain of non-normal attraction.

北京阿比特科技有限公司