For aerial swarms, navigation in a prescribed formation is widely practiced in various scenarios. However, the associated planning strategies typically lack the capability of avoiding obstacles in cluttered environments. To address this deficiency, we present an optimization-based method that ensures collision-free trajectory generation for formation flight. In this paper, a novel differentiable metric is proposed to quantify the overall similarity distance between formations. We then formulate this metric into an optimization framework, which achieves spatial-temporal planning using polynomial trajectories. Minimization over collision penalty is also incorporated into the framework, so that formation preservation and obstacle avoidance can be handled simultaneously. To validate the efficiency of our method, we conduct benchmark comparisons with other cutting-edge works. Integrated with an autonomous distributed aerial swarm system, the proposed method demonstrates its efficiency and robustness in real-world experiments with obstacle-rich surroundings. We will release the source code for the reference of the community.
We present a novel approach to maximize the communication-aware coverage for robots operating over large-scale geographical regions of interest (ROIs). Our approach complements the underlying network topology in neighborhood selection and control, rendering it highly robust in dynamic environments. We formulate the coverage as a multi-stage, cooperative graphical game and employ Variational Inference (VI) to reach the equilibrium. We experimentally validate our approach in an mobile ad-hoc wireless network scenario using Unmanned Aerial Vehicles (UAV) and User Equipment (UE) robots. We show that it can cater to ROIs defined by stationary and moving User Equipment (UE) robots under realistic network conditions.
Manipulating articulated objects requires multiple robot arms in general. It is challenging to enable multiple robot arms to collaboratively complete manipulation tasks on articulated objects. In this paper, we present $\textbf{V-MAO}$, a framework for learning multi-arm manipulation of articulated objects. Our framework includes a variational generative model that learns contact point distribution over object rigid parts for each robot arm. The training signal is obtained from interaction with the simulation environment which is enabled by planning and a novel formulation of object-centric control for articulated objects. We deploy our framework in a customized MuJoCo simulation environment and demonstrate that our framework achieves a high success rate on six different objects and two different robots. We also show that generative modeling can effectively learn the contact point distribution on articulated objects.
Performing highly agile acrobatic motions with a long flight phase requires perfect timing, high accuracy, and coordination of the whole body motion. To address these challenges, this paper presents a unified timing and trajectory optimization framework for legged robots performing aggressive 3D jumping. In our approach, we firstly utilize an effective optimization framework using simplified rigid body dynamics to solve for contact timings and a reference trajectory of the robot body. The solution of this module is then used to formulate a whole-body trajectory optimization based on the full nonlinear dynamics of the robot. This combination allows us to effectively optimize for contact timings while guaranteeing the accuracy of the jumping trajectory that can be realized in the hardware. We validate the efficiency of the proposed framework on the A1 robot model for various 3D jumping tasks such as double-backflips and double barrel roll off the high altitude of 2m and 0.8m respectively. Experimental validation was also successfully conducted for different 3D jumping motions such as barrel roll from a box or diagonal jumps.
Unmanned Aerial Vehicles (UAVs) have moved beyond a platform for hobbyists to enable environmental monitoring, journalism, film industry, search and rescue, package delivery, and entertainment. This paper describes 3D displays using swarms of flying light specks, FLSs. An FLS is a small (hundreds of micrometers in size) UAV with one or more light sources to generate different colors and textures with adjustable brightness. A synchronized swarm of FLSs renders an illumination in a pre-specified 3D volume, an FLS display. An FLS display provides true depth, enabling a user to perceive a scene more completely by analyzing its illumination from different angles. An FLS display may either be non-immersive or immersive. Both will support 3D acoustics. Non-immersive FLS displays may be the size of a 1980's computer monitor, enabling a surgical team to observe and control micro robots performing heart surgery inside a patient's body. Immersive FLS displays may be the size of a room, enabling users to interact with objects, e.g., a rock, a teapot. An object with behavior will be constructed using FLS-matters. FLS-matter will enable a user to touch and manipulate an object, e.g., a user may pick up a teapot or throw a rock. An immersive and interactive FLS display will approximate Star Trek's Holodeck. A successful realization of the research ideas presented in this paper will provide fundamental insights into implementing a Holodeck using swarms of FLSs. A Holodeck will transform the future of human communication and perception, and how we interact with information and data. It will revolutionize the future of how we work, learn, play and entertain, receive medical care, and socialize.
The current strive towards end-to-end trainable computer vision systems imposes major challenges for the task of visual tracking. In contrast to most other vision problems, tracking requires the learning of a robust target-specific appearance model online, during the inference stage. To be end-to-end trainable, the online learning of the target model thus needs to be embedded in the tracking architecture itself. Due to these difficulties, the popular Siamese paradigm simply predicts a target feature template. However, such a model possesses limited discriminative power due to its inability of integrating background information. We develop an end-to-end tracking architecture, capable of fully exploiting both target and background appearance information for target model prediction. Our architecture is derived from a discriminative learning loss by designing a dedicated optimization process that is capable of predicting a powerful model in only a few iterations. Furthermore, our approach is able to learn key aspects of the discriminative loss itself. The proposed tracker sets a new state-of-the-art on 6 tracking benchmarks, achieving an EAO score of 0.440 on VOT2018, while running at over 40 FPS.
Most policy search algorithms require thousands of training episodes to find an effective policy, which is often infeasible with a physical robot. This survey article focuses on the extreme other end of the spectrum: how can a robot adapt with only a handful of trials (a dozen) and a few minutes? By analogy with the word "big-data", we refer to this challenge as "micro-data reinforcement learning". We show that a first strategy is to leverage prior knowledge on the policy structure (e.g., dynamic movement primitives), on the policy parameters (e.g., demonstrations), or on the dynamics (e.g., simulators). A second strategy is to create data-driven surrogate models of the expected reward (e.g., Bayesian optimization) or the dynamical model (e.g., model-based policy search), so that the policy optimizer queries the model instead of the real system. Overall, all successful micro-data algorithms combine these two strategies by varying the kind of model and prior knowledge. The current scientific challenges essentially revolve around scaling up to complex robots (e.g., humanoids), designing generic priors, and optimizing the computing time.
We study active object tracking, where a tracker takes as input the visual observation (i.e., frame sequence) and produces the camera control signal (e.g., move forward, turn left, etc.). Conventional methods tackle the tracking and the camera control separately, which is challenging to tune jointly. It also incurs many human efforts for labeling and many expensive trial-and-errors in realworld. To address these issues, we propose, in this paper, an end-to-end solution via deep reinforcement learning, where a ConvNet-LSTM function approximator is adopted for the direct frame-toaction prediction. We further propose an environment augmentation technique and a customized reward function, which are crucial for a successful training. The tracker trained in simulators (ViZDoom, Unreal Engine) shows good generalization in the case of unseen object moving path, unseen object appearance, unseen background, and distracting object. It can restore tracking when occasionally losing the target. With the experiments over the VOT dataset, we also find that the tracking ability, obtained solely from simulators, can potentially transfer to real-world scenarios.
Metric learning learns a metric function from training data to calculate the similarity or distance between samples. From the perspective of feature learning, metric learning essentially learns a new feature space by feature transformation (e.g., Mahalanobis distance metric). However, traditional metric learning algorithms are shallow, which just learn one metric space (feature transformation). Can we further learn a better metric space from the learnt metric space? In other words, can we learn metric progressively and nonlinearly like deep learning by just using the existing metric learning algorithms? To this end, we present a hierarchical metric learning scheme and implement an online deep metric learning framework, namely ODML. Specifically, we take one online metric learning algorithm as a metric layer, followed by a nonlinear layer (i.e., ReLU), and then stack these layers modelled after the deep learning. The proposed ODML enjoys some nice properties, indeed can learn metric progressively and performs superiorly on some datasets. Various experiments with different settings have been conducted to verify these properties of the proposed ODML.
In order to track all persons in a scene, the tracking-by-detection paradigm has proven to be a very effective approach. Yet, relying solely on a single detector is also a major limitation, as useful image information might be ignored. Consequently, this work demonstrates how to fuse two detectors into a tracking system. To obtain the trajectories, we propose to formulate tracking as a weighted graph labeling problem, resulting in a binary quadratic program. As such problems are NP-hard, the solution can only be approximated. Based on the Frank-Wolfe algorithm, we present a new solver that is crucial to handle such difficult problems. Evaluation on pedestrian tracking is provided for multiple scenarios, showing superior results over single detector tracking and standard QP-solvers. Finally, our tracker ranks 2nd on the MOT16 benchmark and 1st on the new MOT17 benchmark, outperforming over 90 trackers.
In this paper we propose an effective non-rigid object tracking method based on spatial-temporal consistent saliency detection. In contrast to most existing trackers that use a bounding box to specify the tracked target, the proposed method can extract the accurate regions of the target as tracking output, which achieves better description of the non-rigid objects while reduces background pollution to the target model. Furthermore, our model has several unique features. First, a tailored deep fully convolutional neural network (TFCN) is developed to model the local saliency prior for a given image region, which not only provides the pixel-wise outputs but also integrates the semantic information. Second, a multi-scale multi-region mechanism is proposed to generate local region saliency maps that effectively consider visual perceptions with different spatial layouts and scale variations. Subsequently, these saliency maps are fused via a weighted entropy method, resulting in a final discriminative saliency map. Finally, we present a non-rigid object tracking algorithm based on the proposed saliency detection method by utilizing a spatial-temporal consistent saliency map (STCSM) model to conduct target-background classification and using a simple fine-tuning scheme for online updating. Numerous experimental results demonstrate that the proposed algorithm achieves competitive performance in comparison with state-of-the-art methods for both saliency detection and visual tracking, especially outperforming other related trackers on the non-rigid object tracking datasets.