亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In order to optimize the radiotherapy delivery for cancer treatment, especially when dealing with complex treatments such as Total Marrow and Lymph Node Irradiation (TMLI), the accurate contouring of the Planning Target Volume (PTV) is crucial. Unfortunately, relying on manual contouring for such treatments is time-consuming and prone to errors. In this paper, we investigate the application of Deep Learning (DL) to automate the segmentation of the PTV in TMLI treatment, building upon previous work that introduced a solution to this problem based on a 2D U-Net model. We extend the previous research (i) by employing the nnU-Net framework to develop both 2D and 3D U-Net models and (ii) by evaluating the trained models on the PTV with the exclusion of bones, which consist mainly of lymp-nodes and represent the most challenging region of the target volume to segment. Our result show that the introduction of nnU-NET framework led to statistically significant improvement in the segmentation performance. In addition, the analysis on the PTV after the exclusion of bones showed that the models are quite robust also on the most challenging areas of the target volume. Overall, our study is a significant step forward in the application of DL in a complex radiotherapy treatment such as TMLI, offering a viable and scalable solution to increase the number of patients who can benefit from this treatment.

相關內容

Prior research has found that differences in the early period of neural network training significantly impact the performance of in-distribution (ID) tasks. However, neural networks are often sensitive to out-of-distribution (OOD) data, making them less reliable in downstream applications. Yet, the impact of the early training period on OOD generalization remains understudied due to its complexity and lack of effective analytical methodologies. In this work, we investigate the relationship between learning dynamics and OOD generalization during the early period of neural network training. We utilize the trace of Fisher Information and sharpness, with a focus on gradual unfreezing (i.e. progressively unfreezing parameters during training) as the methodology for investigation. Through a series of empirical experiments, we show that 1) selecting the number of trainable parameters at different times during training, i.e. realized by gradual unfreezing -- has a minuscule impact on ID results, but greatly affects the generalization to OOD data; 2) the absolute values of sharpness and trace of Fisher Information at the initial period of training are not indicative for OOD generalization, but the relative values could be; 3) the trace of Fisher Information and sharpness may be used as indicators for the removal of interventions during early period of training for better OOD generalization.

A large fraction of total healthcare expenditure occurs due to end-of-life (EOL) care, which means it is important to study the problem of more carefully incentivizing necessary versus unnecessary EOL care because this has the potential to reduce overall healthcare spending. This paper introduces a principal-agent model that integrates a mixed payment system of fee-for-service and pay-for-performance in order to analyze whether it is possible to better align healthcare provider incentives with patient outcomes and cost-efficiency in EOL care. The primary contributions are to derive optimal contracts for EOL care payments using a principal-agent framework under three separate models for the healthcare provider, where each model considers a different level of risk tolerance for the provider. We derive these optimal contracts by converting the underlying principal-agent models from a bilevel optimization problem into a single-level optimization problem that can be analytically solved. Our results are demonstrated using a simulation where an optimal contract is used to price intracranial pressure monitoring for traumatic brain injuries.

Instruction-tuned LLMs can respond to explicit queries formulated as prompts, which greatly facilitates interaction with human users. However, prompt-based approaches might not always be able to tap into the wealth of implicit knowledge acquired by LLMs during pre-training. This paper presents a comprehensive study of ways to evaluate semantic plausibility in LLMs. We compare base and instruction-tuned LLM performance on an English sentence plausibility task via (a) explicit prompting and (b) implicit estimation via direct readout of the probabilities models assign to strings. Experiment 1 shows that, across model architectures and plausibility datasets, (i) log likelihood ($\textit{LL}$) scores are the most reliable indicator of sentence plausibility, with zero-shot prompting yielding inconsistent and typically poor results; (ii) $\textit{LL}$-based performance is still inferior to human performance; (iii) instruction-tuned models have worse $\textit{LL}$-based performance than base models. In Experiment 2, we show that $\textit{LL}$ scores across models are modulated by context in the expected way, showing high performance on three metrics of context-sensitive plausibility and providing a direct match to explicit human plausibility judgments. Overall, $\textit{LL}$ estimates remain a more reliable measure of plausibility in LLMs than direct prompting.

Magnetic microrobots can be navigated by an external magnetic field to autonomously move within living organisms with complex and unstructured environments. Potential applications include drug delivery, diagnostics, and therapeutic interventions. Existing techniques commonly impart magnetic properties to the target object,or drive the robot to contact and then manipulate the object, both probably inducing physical damage. This paper considers a non-contact formulation, where the robot spins to generate a repulsive field to push the object without physical contact. Under such a formulation, the main challenge is that the motion model between the input of the magnetic field and the output velocity of the target object is commonly unknown and difficult to analyze. To deal with it, this paper proposes a data-driven-based solution. A neural network is constructed to efficiently estimate the motion model. Then, an approximate model-based optimal control scheme is developed to push the object to track a time-varying trajectory, maintaining the non-contact with distance constraints. Furthermore, a straightforward planner is introduced to assess the adaptability of non-contact manipulation in a cluttered unstructured environment. Experimental results are presented to show the tracking and navigation performance of the proposed scheme.

Recent advancements in Artificial Intelligence (AI) have profoundly influenced medical fields, by providing tools to reduce clinical workloads. However, most AI models are constrained to execute unimodal tasks, in stark contrast to the comprehensive approaches utilized by medical professionals. To address this, here we present RO-LMM, a multi-purpose large multimodal model (LMM) tailored for the field of radiation oncology. This model covers series of tasks within clinical workflow, adept at clinical report summarization, radiation treatment plan suggestion, and plan-guided target volume segmentation. In particular, to perform consecutive clinical tasks, we further present a novel Consistency Embedding Fine-Tuning (CEFTune) technique, which boosts LMM's robustness to noisy inputs while preserving the capability of handling clean inputs, and transform this concept into LMM-driven segmentation framework as Consistency Embedding Segmentation~(CESEG). Experimental results on multi-centre cohorts demonstrate our RO-LMM's promising performance for multiple clinical tasks with generalization capabilities.

Predictions of opaque black-box systems are frequently deployed in high-stakes applications such as healthcare. For such applications, it is crucial to assess how models handle samples beyond the domain of training data. While several metrics and tests exist to detect out-of-distribution (OoD) data from in-distribution (InD) data to a deep neural network (DNN), their performance varies significantly across datasets, models, and tasks, which limits their practical use. In this paper, we propose a hypothesis-driven approach to quantify whether a new sample is InD or OoD. Given a trained DNN and some input, we first feed the input through the DNN and compute an ensemble of OoD metrics, which we term latent responses. We then formulate the OoD detection problem as a hypothesis test between latent responses of different groups, and use permutation-based resampling to infer the significance of the observed latent responses under a null hypothesis. We adapt our method to detect an unseen sample of bacteria to a trained deep learning model, and show that it reveals interpretable differences between InD and OoD latent responses. Our work has implications for systematic novelty detection and informed decision-making from classifiers trained on a subset of labels.

Automatic coding patient behaviors is essential to support decision making for psychotherapists during the motivational interviewing (MI), a collaborative communication intervention approach to address psychiatric issues, such as alcohol and drug addiction. While the behavior coding task has rapidly adapted machine learning to predict patient states during the MI sessions, lacking of domain-specific knowledge and overlooking patient-therapist interactions are major challenges in developing and deploying those models in real practice. To encounter those challenges, we introduce the Chain-of-Interaction (CoI) prompting method aiming to contextualize large language models (LLMs) for psychiatric decision support by the dyadic interactions. The CoI prompting approach systematically breaks down the coding task into three key reasoning steps, extract patient engagement, learn therapist question strategies, and integrates dyadic interactions between patients and therapists. This approach enables large language models to leverage the coding scheme, patient state, and domain knowledge for patient behavioral coding. Experiments on real-world datasets can prove the effectiveness and flexibility of our prompting method with multiple state-of-the-art LLMs over existing prompting baselines. We have conducted extensive ablation analysis and demonstrate the critical role of dyadic interactions in applying LLMs for psychotherapy behavior understanding.

Gene therapies aim to address the root causes of diseases, particularly those stemming from rare genetic defects that can be life-threatening or severely debilitating. While there has been notable progress in the development of gene therapies in recent years, understanding their long-term effectiveness remains challenging due to a lack of data on long-term outcomes, especially during the early stages of their introduction to the market. To address the critical question of estimating long-term efficacy without waiting for the completion of lengthy clinical trials, we propose a novel Bayesian framework. This framework selects pertinent data from external sources, often early-phase clinical trials with more comprehensive longitudinal efficacy data that could lead to an improved inference of the long-term efficacy outcome. We apply this methodology to predict the long-term factor IX (FIX) levels of HEMGENIX (etranacogene dezaparvovec), the first FDA-approved gene therapy to treat adults with severe Hemophilia B, in a phase 3 study. Our application showcases the capability of the framework to estimate the 5-year FIX levels following HEMGENIX therapy, demonstrating sustained FIX levels induced by HEMGENIX infusion. Additionally, we provide theoretical insights into the methodology by establishing its posterior convergence properties.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Human doctors with well-structured medical knowledge can diagnose a disease merely via a few conversations with patients about symptoms. In contrast, existing knowledge-grounded dialogue systems often require a large number of dialogue instances to learn as they fail to capture the correlations between different diseases and neglect the diagnostic experience shared among them. To address this issue, we propose a more natural and practical paradigm, i.e., low-resource medical dialogue generation, which can transfer the diagnostic experience from source diseases to target ones with a handful of data for adaptation. It is capitalized on a commonsense knowledge graph to characterize the prior disease-symptom relations. Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues. More importantly, by dynamically evolving disease-symptom graphs, GEML also well addresses the real-world challenges that the disease-symptom correlations of each disease may vary or evolve along with more diagnostic cases. Extensive experiment results on the CMDD dataset and our newly-collected Chunyu dataset testify the superiority of our approach over state-of-the-art approaches. Besides, our GEML can generate an enriched dialogue-sensitive knowledge graph in an online manner, which could benefit other tasks grounded on knowledge graph.

北京阿比特科技有限公司