Our study presents an intermediate-level modeling approach that bridges the gap between complex Agent-Based Models (ABMs) and traditional compartmental models for infectious diseases. We introduce "super-agents" to simulate infection spread in cities, reducing computational complexity while retaining individual-level interactions. This approach leverages real-world mobility data and strategic geospatial tessellations for efficiency. Voronoi Diagram tessellations, based on specific street network locations, outperform standard Census Block Group tessellations, and a hybrid approach balances accuracy and efficiency. Benchmarking against existing ABMs highlights key optimizations. This research improves disease modeling in urban areas, aiding public health strategies in scenarios requiring geographic specificity and high computational efficiency.
Cooperative perception (CP) is a key technology to facilitate consistent and accurate situational awareness for connected and autonomous vehicles (CAVs). To tackle the network resource inefficiency issue in traditional broadcast-based CP, unicast-based CP has been proposed to associate CAV pairs for cooperative perception via vehicle-to-vehicle transmission. In this paper, we investigate unicast-based CP among CAV pairs. With the consideration of dynamic perception workloads and channel conditions due to vehicle mobility and dynamic radio resource availability, we propose an adaptive cooperative perception scheme for CAV pairs in a mixed-traffic autonomous driving scenario with both CAVs and human-driven vehicles. We aim to determine when to switch between cooperative perception and stand-alone perception for each CAV pair, and allocate communication and computing resources to cooperative CAV pairs for maximizing the computing efficiency gain under perception task delay requirements. A model-assisted multi-agent reinforcement learning (MARL) solution is developed, which integrates MARL for an adaptive CAV cooperation decision and an optimization model for communication and computing resource allocation. Simulation results demonstrate the effectiveness of the proposed scheme in achieving high computing efficiency gain, as compared with benchmark schemes.
Large Language Models (LLMs), built upon Transformer-based architectures with massive pretraining on diverse data, have not only revolutionized natural language processing but also extended their prowess to various domains, marking a significant stride towards artificial general intelligence. The interplay between LLMs and Evolutionary Algorithms (EAs), despite differing in objectives and methodologies, reveals intriguing parallels, especially in their shared optimization nature, black-box characteristics, and proficiency in handling complex problems. Meanwhile, EA can not only provide an optimization framework for LLM's further enhancement under black-box settings but also empower LLM with flexible global search and iterative mechanism in applications. On the other hand, LLM's abundant domain knowledge enables EA to perform smarter searches, while its text processing capability assist in deploying EA across various tasks. Based on their complementary advantages, this paper presents a comprehensive review and forward-looking roadmap, categorizing their mutual inspiration into LLM-enhanced evolutionary optimization and EA-enhanced LLM. Some integrated synergy methods are further introduced to exemplify the amalgamation of LLMs and EAs in various application scenarios, including neural architecture search, code generation, software engineering, and text generation. As the first comprehensive review specifically focused on the EA research in the era of LLMs, this paper provides a foundational stepping stone for understanding and harnessing the collaborative potential of LLMs and EAs. By presenting a comprehensive review, categorization, and critical analysis, we contribute to the ongoing discourse on the cross-disciplinary study of these two powerful paradigms. The identified challenges and future directions offer guidance to unlock the full potential of this innovative collaboration.
Graph Neural Networks (GNNs) have become the preferred tool to process graph data, with their efficacy being boosted through graph data augmentation techniques. Despite the evolution of augmentation methods, issues like graph property distortions and restricted structural changes persist. This leads to the question: Is it possible to develop more property-conserving and structure-sensitive augmentation methods? Through a spectral lens, we investigate the interplay between graph properties, their augmentation, and their spectral behavior, and found that keeping the low-frequency eigenvalues unchanged can preserve the critical properties at a large scale when generating augmented graphs. These observations inform our introduction of the Dual-Prism (DP) augmentation method, comprising DP-Noise and DP-Mask, which adeptly retains essential graph properties while diversifying augmented graphs. Extensive experiments validate the efficiency of our approach, providing a new and promising direction for graph data augmentation.
Artificial Intelligence (AI), particularly through the advent of large-scale generative AI (GenAI) models such as Large Language Models (LLMs), has become a transformative element in contemporary technology. While these models have unlocked new possibilities, they simultaneously present significant challenges, such as concerns over data privacy and the propensity to generate misleading or fabricated content. Current frameworks for Responsible AI (RAI) often fall short in providing the granular guidance necessary for tangible application, especially for Accountability-a principle that is pivotal for ensuring transparent and auditable decision-making, bolstering public trust, and meeting increasing regulatory expectations. This study bridges the accountability gap by introducing our effort towards a comprehensive metrics catalogue, formulated through a systematic multivocal literature review (MLR) that integrates findings from both academic and grey literature. Our catalogue delineates process metrics that underpin procedural integrity, resource metrics that provide necessary tools and frameworks, and product metrics that reflect the outputs of AI systems. This tripartite framework is designed to operationalize Accountability in AI, with a special emphasis on addressing the intricacies of GenAI.
In our research, we pioneer a novel approach to evaluate the effectiveness of jailbreak attacks on Large Language Models (LLMs), such as GPT-4 and LLaMa2, diverging from traditional robustness-focused binary evaluations. Our study introduces two distinct evaluation frameworks: a coarse-grained evaluation and a fine-grained evaluation. Each framework, using a scoring range from 0 to 1, offers a unique perspective, enabling a more comprehensive and nuanced evaluation of attack effectiveness and empowering attackers to refine their attack prompts with greater understanding. Furthermore, we have developed a comprehensive ground truth dataset specifically tailored for jailbreak tasks. This dataset not only serves as a crucial benchmark for our current study but also establishes a foundational resource for future research, enabling consistent and comparative analyses in this evolving field. Upon meticulous comparison with traditional evaluation methods, we discovered that our evaluation aligns with the baseline's trend while offering a more profound and detailed assessment. We believe that by accurately evaluating the effectiveness of attack prompts in the Jailbreak task, our work lays a solid foundation for assessing a wider array of similar or even more complex tasks in the realm of prompt injection, potentially revolutionizing this field.
We present a comprehensive, user-centric approach to understand preferences in AI-based productivity agents and develop personalized solutions tailored to users' needs. Utilizing a two-phase method, we first conducted a survey with 363 participants, exploring various aspects of productivity, communication style, agent approach, personality traits, personalization, and privacy. Drawing on the survey insights, we developed a GPT-4 powered personalized productivity agent that utilizes telemetry data gathered via Viva Insights from information workers to provide tailored assistance. We compared its performance with alternative productivity-assistive tools, such as dashboard and narrative, in a study involving 40 participants. Our findings highlight the importance of user-centric design, adaptability, and the balance between personalization and privacy in AI-assisted productivity tools. By building on the insights distilled from our study, we believe that our work can enable and guide future research to further enhance productivity solutions, ultimately leading to optimized efficiency and user experiences for information workers.
Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.
Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as \emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary points out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.
An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.