We propose an efficient inference framework for semi-supervised video object segmentation by exploiting the temporal redundancy of the video. Our method performs inference on selected keyframes and makes predictions for other frames via propagation based on motion vectors and residuals from the compressed video bitstream. Specifically, we propose a new motion vector-based warping method for propagating segmentation masks from keyframes to other frames in a multi-reference manner. Additionally, we propose a residual-based refinement module that can correct and add detail to the block-wise propagated segmentation masks. Our approach is flexible and can be added on top of existing video object segmentation algorithms. With STM with top-k filtering as our base model, we achieved highly competitive results on DAVIS16 and YouTube-VOS with substantial speedups of up to 4.9X with little loss in accuracy.
We propose a novel neural network module that transforms an existing single-frame semantic segmentation model into a video semantic segmentation pipeline. In contrast to prior works, we strive towards a simple, fast, and general module that can be integrated into virtually any single-frame architecture. Our approach aggregates a rich representation of the semantic information in past frames into a memory module. Information stored in the memory is then accessed through an attention mechanism. In contrast to previous memory-based approaches, we propose a fast local attention layer, providing temporal appearance cues in the local region of prior frames. We further fuse these cues with an encoding of the current frame through a second attention-based module. The segmentation decoder processes the fused representation to predict the final semantic segmentation. We integrate our approach into two popular semantic segmentation networks: ERFNet and PSPNet. We observe an improvement in segmentation performance on Cityscapes by 1.7% and 2.1% in mIoU respectively, while increasing inference time of ERFNet by only 1.5ms.
We present Hierarchical Memory Matching Network (HMMN) for semi-supervised video object segmentation. Based on a recent memory-based method [33], we propose two advanced memory read modules that enable us to perform memory reading in multiple scales while exploiting temporal smoothness. We first propose a kernel guided memory matching module that replaces the non-local dense memory read, commonly adopted in previous memory-based methods. The module imposes the temporal smoothness constraint in the memory read, leading to accurate memory retrieval. More importantly, we introduce a hierarchical memory matching scheme and propose a top-k guided memory matching module in which memory read on a fine-scale is guided by that on a coarse-scale. With the module, we perform memory read in multiple scales efficiently and leverage both high-level semantic and low-level fine-grained memory features to predict detailed object masks. Our network achieves state-of-the-art performance on the validation sets of DAVIS 2016/2017 (90.8% and 84.7%) and YouTube-VOS 2018/2019 (82.6% and 82.5%), and test-dev set of DAVIS 2017 (78.6%). The source code and model are available online: //github.com/Hongje/HMMN.
This paper studies the problem of semi-supervised video object segmentation(VOS). Multiple works have shown that memory-based approaches can be effective for video object segmentation. They are mostly based on pixel-level matching, both spatially and temporally. The main shortcoming of memory-based approaches is that they do not take into account the sequential order among frames and do not exploit object-level knowledge from the target. To address this limitation, we propose to Learn position and target Consistency framework for Memory-based video object segmentation, termed as LCM. It applies the memory mechanism to retrieve pixels globally, and meanwhile learns position consistency for more reliable segmentation. The learned location response promotes a better discrimination between target and distractors. Besides, LCM introduces an object-level relationship from the target to maintain target consistency, making LCM more robust to error drifting. Experiments show that our LCM achieves state-of-the-art performance on both DAVIS and Youtube-VOS benchmark. And we rank the 1st in the DAVIS 2020 challenge semi-supervised VOS task.
Video instance segmentation (VIS) is the task that requires simultaneously classifying, segmenting and tracking object instances of interest in video. Recent methods typically develop sophisticated pipelines to tackle this task. Here, we propose a new video instance segmentation framework built upon Transformers, termed VisTR, which views the VIS task as a direct end-to-end parallel sequence decoding/prediction problem. Given a video clip consisting of multiple image frames as input, VisTR outputs the sequence of masks for each instance in the video in order directly. At the core is a new, effective instance sequence matching and segmentation strategy, which supervises and segments instances at the sequence level as a whole. VisTR frames the instance segmentation and tracking in the same perspective of similarity learning, thus considerably simplifying the overall pipeline and is significantly different from existing approaches. Without bells and whistles, VisTR achieves the highest speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.
Temporal receptive fields of models play an important role in action segmentation. Large receptive fields facilitate the long-term relations among video clips while small receptive fields help capture the local details. Existing methods construct models with hand-designed receptive fields in layers. Can we effectively search for receptive field combinations to replace hand-designed patterns? To answer this question, we propose to find better receptive field combinations through a global-to-local search scheme. Our search scheme exploits both global search to find the coarse combinations and local search to get the refined receptive field combination patterns further. The global search finds possible coarse combinations other than human-designed patterns. On top of the global search, we propose an expectation guided iterative local search scheme to refine combinations effectively. Our global-to-local search can be plugged into existing action segmentation methods to achieve state-of-the-art performance.
Video instance segmentation is a complex task in which we need to detect, segment, and track each object for any given video. Previous approaches only utilize single-frame features for the detection, segmentation, and tracking of objects and they suffer in the video scenario due to several distinct challenges such as motion blur and drastic appearance change. To eliminate ambiguities introduced by only using single-frame features, we propose a novel comprehensive feature aggregation approach (CompFeat) to refine features at both frame-level and object-level with temporal and spatial context information. The aggregation process is carefully designed with a new attention mechanism which significantly increases the discriminative power of the learned features. We further improve the tracking capability of our model through a siamese design by incorporating both feature similarities and spatial similarities. Experiments conducted on the YouTube-VIS dataset validate the effectiveness of proposed CompFeat. Our code will be available at //github.com/SHI-Labs/CompFeat-for-Video-Instance-Segmentation.
Video Object Segmentation (VOS) is typically formulated in a semi-supervised setting. Given the ground-truth segmentation mask on the first frame, the task of VOS is to track and segment the single or multiple objects of interests in the rest frames of the video at the pixel level. One of the fundamental challenges in VOS is how to make the most use of the temporal information to boost the performance. We present an end-to-end network which stores short- and long-term video sequence information preceding the current frame as the temporal memories to address the temporal modeling in VOS. Our network consists of two temporal sub-networks including a short-term memory sub-network and a long-term memory sub-network. The short-term memory sub-network models the fine-grained spatial-temporal interactions between local regions across neighboring frames in video via a graph-based learning framework, which can well preserve the visual consistency of local regions over time. The long-term memory sub-network models the long-range evolution of object via a Simplified-Gated Recurrent Unit (S-GRU), making the segmentation be robust against occlusions and drift errors. In our experiments, we show that our proposed method achieves a favorable and competitive performance on three frequently-used VOS datasets, including DAVIS 2016, DAVIS 2017 and Youtube-VOS in terms of both speed and accuracy.
We introduce Spatial-Temporal Memory Networks for video object detection. At its core, a novel Spatial-Temporal Memory module (STMM) serves as the recurrent computation unit to model long-term temporal appearance and motion dynamics. The STMM's design enables full integration of pretrained backbone CNN weights, which we find to be critical for accurate detection. Furthermore, in order to tackle object motion in videos, we propose a novel MatchTrans module to align the spatial-temporal memory from frame to frame. Our method produces state-of-the-art results on the benchmark ImageNet VID dataset, and our ablative studies clearly demonstrate the contribution of our different design choices. We release our code and models at //fanyix.cs.ucdavis.edu/project/stmn/project.html.
Instance level video object segmentation is an important technique for video editing and compression. To capture the temporal coherence, in this paper, we develop MaskRNN, a recurrent neural net approach which fuses in each frame the output of two deep nets for each object instance -- a binary segmentation net providing a mask and a localization net providing a bounding box. Due to the recurrent component and the localization component, our method is able to take advantage of long-term temporal structures of the video data as well as rejecting outliers. We validate the proposed algorithm on three challenging benchmark datasets, the DAVIS-2016 dataset, the DAVIS-2017 dataset, and the Segtrack v2 dataset, achieving state-of-the-art performance on all of them.
This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.