We study the change point detection problem for high-dimensional linear regression models. The existing literature mainly focuses on the change point estimation with stringent sub-Gaussian assumptions on the errors. In practice, however, there is no prior knowledge about the existence of a change point or the tail structures of errors. To address these issues, in this paper, we propose a novel tail-adaptive approach for simultaneous change point testing and estimation. The method is built on a new loss function which is a weighted combination between the composite quantile and least squared losses, allowing us to borrow information of the possible change points from both the conditional mean and quantiles. For the change point testing, based on the adjusted $L_2$-norm aggregation of a weighted score CUSUM process, we propose a family of individual testing statistics with different weights to account for the unknown tail structures. Through a combination of the individual tests, a tail-adaptive test is further constructed that is powerful for sparse alternatives of regression coefficients' changes under various tail structures. For the change point estimation, a family of argmax-based individual estimators is proposed once a change point is detected. In theory, for both individual and tail-adaptive tests, bootstrap procedures are proposed to approximate their limiting null distributions. Under some mild conditions, we justify the validity of the new tests in terms of size and power under the high-dimensional setup. The corresponding change point estimators are shown to be rate optimal up to a logarithm factor. Moreover, combined with the wild binary segmentation technique, a new algorithm is proposed to detect multiple change points in a tail-adaptive manner. Extensive numerical results are conducted to illustrate the competitive performance of the proposed method.
Leave-one-out cross-validation (LOO-CV) is a popular method for estimating out-of-sample predictive accuracy. However, computing LOO-CV criteria can be computationally expensive due to the need to fit the model multiple times. In the Bayesian context, importance sampling provides a possible solution but classical approaches can easily produce estimators whose variance is infinite, making them potentially unreliable. Here we propose and analyze a novel mixture estimator to compute Bayesian LOO-CV criteria. Our method retains the simplicity and computational convenience of classical approaches, while guaranteeing finite variance of the resulting estimators. Both theoretical and numerical results are provided to illustrate the improved robustness and efficiency. The computational benefits are particularly significant in high-dimensional problems, allowing to perform Bayesian LOO-CV for a broader range of models. The proposed methodology is easily implementable in standard probabilistic programming software and has a computational cost roughly equivalent to fitting the original model once.
This paper studies the impact of bootstrap procedure on the eigenvalue distributions of the sample covariance matrix under the high-dimensional factor structure. We provide asymptotic distributions for the top eigenvalues of bootstrapped sample covariance matrix under mild conditions. After bootstrap, the spiked eigenvalues which are driven by common factors will converge weakly to Gaussian limits via proper scaling and centralization. However, the largest non-spiked eigenvalue is mainly determined by order statistics of bootstrap resampling weights, and follows extreme value distribution. Based on the disparate behavior of the spiked and non-spiked eigenvalues, we propose innovative methods to test the number of common factors. According to the simulations and a real data example, the proposed methods are the only ones performing reliably and convincingly under the existence of both weak factors and cross-sectionally correlated errors. Our technical details contribute to random matrix theory on spiked covariance model with convexly decaying density and unbounded support, or with general elliptical distributions.
Mixtures of experts (MoE) models are a popular framework for modeling heterogeneity in data, for both regression and classification problems in statistics and machine learning, due to their flexibility and the abundance of available statistical estimation and model choice tools. Such flexibility comes from allowing the mixture weights (or gating functions) in the MoE model to depend on the explanatory variables, along with the experts (or component densities). This permits the modeling of data arising from more complex data generating processes when compared to the classical finite mixtures and finite mixtures of regression models, whose mixing parameters are independent of the covariates. The use of MoE models in a high-dimensional setting, when the number of explanatory variables can be much larger than the sample size, is challenging from a computational point of view, and in particular from a theoretical point of view, where the literature is still lacking results for dealing with the curse of dimensionality, for both the statistical estimation and feature selection problems. We consider the finite MoE model with soft-max gating functions and Gaussian experts for high-dimensional regression on heterogeneous data, and its $l_1$-regularized estimation via the Lasso. We focus on the Lasso estimation properties rather than its feature selection properties. We provide a lower bound on the regularization parameter of the Lasso function that ensures an $l_1$-oracle inequality satisfied by the Lasso estimator according to the Kullback--Leibler loss.
Investigators are increasingly using novel methods for extending (generalizing or transporting) causal inferences from a trial to a target population. In many generalizability and transportability analyses, the trial and the observational data from the target population are separately sampled, following a non-nested trial design. In practical implementations of this design, non-randomized individuals from the target population are often identified by conditioning on the use of a particular treatment, while individuals who used other candidate treatments for the same indication or individuals who did not use any treatment are excluded. In this paper, we argue that conditioning on treatment in the target population changes the estimand of generalizability and transportability analyses and potentially introduces serious bias in the estimation of causal estimands in the target population or the subset of the target population using a specific treatment. Furthermore, we argue that the naive application of marginalization-based or weighting-based standardization methods does not produce estimates of any reasonable causal estimand. We use causal graphs and counterfactual arguments to characterize the identification problems induced by conditioning on treatment in the target population and illustrate the problems using simulated data. We conclude by considering the implications of our findings for applied work.
In this paper, we investigate the matrix estimation problem in the multi-response regression model with measurement errors. A nonconvex error-corrected estimator based on a combination of the amended loss function and the nuclear norm regularizer is proposed to estimate the matrix parameter. Then under the (near) low-rank assumption, we analyse statistical and computational theoretical properties of global solutions of the nonconvex regularized estimator from a general point of view. In the statistical aspect, we establish the nonasymptotic recovery bound for any global solution of the nonconvex estimator, under restricted strong convexity on the loss function. In the computational aspect, we solve the nonconvex optimization problem via the proximal gradient method. The algorithm is proved to converge to a near-global solution and achieve a linear convergence rate. In addition, we also verify sufficient conditions for the general results to be held, in order to obtain probabilistic consequences for specific types of measurement errors, including the additive noise and missing data. Finally, theoretical consequences are demonstrated by several numerical experiments on corrupted errors-in-variables multi-response regression models. Simulation results reveal excellent consistency with our theory under high-dimensional scaling.
State estimation is an essential part of autonomous systems. Integrating the Ultra-Wideband(UWB) technique has been shown to correct the long-term estimation drift and bypass the complexity of loop closure detection. However, few works on robotics adopt UWB as a stand-alone state estimation solution. The primary purpose of this work is to investigate planar pose estimation using only UWB range measurements and study the estimator's statistical efficiency. We prove the excellent property of a two-step scheme, which says that we can refine a consistent estimator to be asymptotically efficient by one step of Gauss-Newton iteration. Grounded on this result, we design the GN-ULS estimator and evaluate it through simulations and collected datasets. GN-ULS attains millimeter and sub-degree level accuracy on our static datasets and attains centimeter and degree level accuracy on our dynamic datasets, presenting the possibility of using only UWB for real-time state estimation.
Consider a set of points sampled independently near a smooth compact submanifold of Euclidean space. We provide mathematically rigorous bounds on the number of sample points required to estimate both the dimension and the tangent spaces of that manifold with high confidence. The algorithm for this estimation is Local PCA, a local version of principal component analysis. Our results accommodate for noisy non-uniform data distribution with the noise that may vary across the manifold, and allow simultaneous estimation at multiple points. Crucially, all of the constants appearing in our bound are explicitly described. The proof uses a matrix concentration inequality to estimate covariance matrices and a Wasserstein distance bound for quantifying nonlinearity of the underlying manifold and non-uniformity of the probability measure.
Variational Bayesian posterior inference often requires simplifying approximations such as mean-field parametrisation to ensure tractability. However, prior work has associated the variational mean-field approximation for Bayesian neural networks with underfitting in the case of small datasets or large model sizes. In this work, we show that invariances in the likelihood function of over-parametrised models contribute to this phenomenon because these invariances complicate the structure of the posterior by introducing discrete and/or continuous modes which cannot be well approximated by Gaussian mean-field distributions. In particular, we show that the mean-field approximation has an additional gap in the evidence lower bound compared to a purpose-built posterior that takes into account the known invariances. Importantly, this invariance gap is not constant; it vanishes as the approximation reverts to the prior. We proceed by first considering translation invariances in a linear model with a single data point in detail. We show that, while the true posterior can be constructed from a mean-field parametrisation, this is achieved only if the objective function takes into account the invariance gap. Then, we transfer our analysis of the linear model to neural networks. Our analysis provides a framework for future work to explore solutions to the invariance problem.
Markov decision processes (MDPs) are formal models commonly used in sequential decision-making. MDPs capture the stochasticity that may arise, for instance, from imprecise actuators via probabilities in the transition function. However, in data-driven applications, deriving precise probabilities from (limited) data introduces statistical errors that may lead to unexpected or undesirable outcomes. Uncertain MDPs (uMDPs) do not require precise probabilities but instead use so-called uncertainty sets in the transitions, accounting for such limited data. Tools from the formal verification community efficiently compute robust policies that provably adhere to formal specifications, like safety constraints, under the worst-case instance in the uncertainty set. We continuously learn the transition probabilities of an MDP in a robust anytime-learning approach that combines a dedicated Bayesian inference scheme with the computation of robust policies. In particular, our method (1) approximates probabilities as intervals, (2) adapts to new data that may be inconsistent with an intermediate model, and (3) may be stopped at any time to compute a robust policy on the uMDP that faithfully captures the data so far. We show the effectiveness of our approach and compare it to robust policies computed on uMDPs learned by the UCRL2 reinforcement learning algorithm in an experimental evaluation on several benchmarks.
We investigate $L_2$ boosting in the context of kernel regression. Kernel smoothers, in general, lack appealing traits like symmetry and positive definiteness, which are critical not only for understanding theoretical aspects but also for achieving good practical performance. We consider a projection-based smoother (Huang and Chen, 2008) that is symmetric, positive definite, and shrinking. Theoretical results based on the orthonormal decomposition of the smoother reveal additional insights into the boosting algorithm. In our asymptotic framework, we may replace the full-rank smoother with a low-rank approximation. We demonstrate that the smoother's low-rank ($d(n)$) is bounded above by $O(h^{-1})$, where $h$ is the bandwidth. Our numerical findings show that, in terms of prediction accuracy, low-rank smoothers may outperform full-rank smoothers. Furthermore, we show that the boosting estimator with low-rank smoother achieves the optimal convergence rate. Finally, to improve the performance of the boosting algorithm in the presence of outliers, we propose a novel robustified boosting algorithm which can be used with any smoother discussed in the study. We investigate the numerical performance of the proposed approaches using simulations and a real-world case.